

PROBLEM SOLVING IN PYTHON LABORATORY

MANUAL
(ARTIFICIAL INTELLIGENCE AND DATA SCIENCE ENGINEERING)

REGULATION – 2021

AUTHOR:

Mrs.A.Rathina Kumari.,MCA.,M.E.,

GENERAL GUIDELINES AND SAFETY INSTRUCTIONS

1. Sign in the log register as soon as you enter the lab and strictly observe your lab timings.

2. Strictly follow the written and verbal instructions given by the teacher / Lab Instructor. If

 you do not understand the instructions, the handouts and the procedures, ask the

instructor or teacher.

3. Never work alone! You should be accompanied by your laboratory partner and / or the

instructors / teaching assistants all the time.

4. It is mandatory to come to lab in a formal dress and wear your ID cards.

5. Do not wear loose-fitting clothing or jewels in the lab. Rings and necklaces are usual excellent

conductors of electricity.

6. Mobile phones should be switched off in the lab. Keep bags in the bag rack.

7. Keep the labs clean at all times, no food and drinks allowed inside the lab.

8. Intentional misconduct will lead to expulsion from the lab.

9. Do not handle any equipment without reading the safety instructions. Read the handout and

procedures in the Lab Manual before starting the experiments.

10. Do your wiring, setup, and a careful circuit checkout before applying power. Do not make

circuit changes or perform any wiring when power is on.

11. Avoid contact with energized electrical circuits.

12. Do not insert connectors forcefully into the sockets.

13. NEVER try to experiment with the power from the wall plug.

14.Immediately report dangerous or exceptional conditions to the Lab instructor / teacher:

Equipment that is not working as expected, wires or connectors are broken, the equipment

that smells or “smokes”. If you are not sure what the problem is or what's going on, switch

off the Emergency shutdown.

15. Never use damaged instruments, wires or connectors. Hand over these parts to the Lab

instructor/Teacher.

16. Be sure of location of fire extinguishers and first aid kits in the laboratory.

17. After completion of Experiment, return the bread board, trainer kits, wires, CRO probes and

other components to lab staff. Do not take any item from the lab without permission.

18. Observation book and lab record should be carried to each lab. Readings of current lab

experiment are to be entered in Observation book and previous lab experiment should be written

in Lab record book. Both the books should be corrected by the faculty in each lab.

19. Special Precautions during soldering practice

a. Hold the soldering iron away from your body. Don't point the iron towards you. b.

Don't use a spread solder on the board as it may cause short circuit.

c. Do not overheat the components as excess heat may damage the components/board.

d. In case of burn or injury seek first aid available in the lab or at the college dispensary.

DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND

DATA SCIENCE ENGINEERING

REGULATION – 2021

GE3171 – PROBLEM SOLVING IN PYTHON

LABORATORY

Mrs.A.RATHINA KUMARI.,MCA.,M.E.,

Assistant Professor/ Artificial Intelligence and Data Science Engineering

Annai Mira College of Engineering and Technology

Ranipet – 632 517

PREFACE
 This book on “PROBLEM SOLVING IN PYTHON LABORATORY MANUAL

(CSE ,AI&DS)” Covers complete syllabus prescribed by the Anna University, Chennai for

the first semester B.E[CSE],B.TECH[AI&DS]. Degree course under Outcome Based

Education Credit System with the new regulation 2021.

 This book covers flow charts for simple python program, Logical concepts like sin(),

cos() and circulate n-variables, display different types of pyramid patterns ,mathematical

functions, Library functions and Python Gaming tools were developed using python

programming Language.

 We hope that this book will be useful to both teachers and students. Finally we would

request the readers to kindly send their valuable comments and suggestions towards the

improvement of the book and the same will be gratefully acknowledge.

 Any suggestion from the reader for the betterment of this book can be dropped into

kavirathna84@gmail.com

Mrs.A.RATHINA KUMARI., MCA.,M.E

mailto:kavirathna84@gmail.com

ACKNOWLEDGEMENT

 We are thankful to and fortunate enough to get constant encouragement, support and

guideline from Chairman Thiru.S.Ramadoss Ayya, Secretary & Treasurer

Mr.G.Thamothiran for his blessings to complete the book successfully.

We would not forget to remember our Principal Dr.T.K.Gopinathan.,Ph.D., for his

constant assistance in preparing this book.

ANNAI MIRA COLLEGE OF ENGINEERING AND TECHNOLOGY

 NH-46, Chennai-Bengaluru National Highways, Arapakkam,

 Vellore-632517, Tamil Nadu, India

 Telephone: 04172-292925 Fax: 04172-292926

 Email:amcet.rtet@gmail.com/info@amcet.in Web: www.amcet.in

DEPARTMENT OF

ARTIFICIAL INTELLIGENCE AND DATA SCIENCE ENGINEERING

GE3171- PROBLEM SOLVING AND PYTHON

PROGRAMMING LABORATORY

PREPARED APPROVED

 BY BY

Mrs.A.RATHINA KUMARI.,MCA.,ME Mrs.M.DIVYA.,ME.,

http://www.amcet.in/

TABLE OF CONTENT

S.NO

LIST OF EXPERIMENTS

PG.NO
1 a) DEVELOP A FLOWCHART FOR ELECTRICITY

BILLING

b) DEVELOP A FLOWCHART FOR SHOP BILLING

c) DEVELOP A FLOWCHART FOR SINE SERIES

d) DEVELOP A FLOWCHART FOR WEIGHT OF

STEELBAR

5

6

7

8

2 a) EXCHANGE THE VALUES OF TWO VARIABLES

b) CIRCULATE THE VALUES OF N VARIABLES

c) FIND THE DISTANCE BETWEEN TWO POINTS

10

12

14

3 a) NUMBER SERIES

b) NUMBER PATTERNS

c) PYRAMID PATTERN

15

17

19

4 a) LIBRARY DETAILS

b) MATERIALS REQUIRED FOR CONSTRUCTION OF A

BUILDING

c) COMPONENTS OF CAR

21

23

25

5 a) IMPLEMENT THE PROGRAMMING LANGUAGE

DETAILS USING SET OPERATORS

b) IMPLEMENT THE COMPONENTS OF AN

AUTOMOBILE USING DICTIONARIES

27

29

6 a) FACTORIAL USING FUNCTIONS

b) CALCULATE THE LARGEST NUMBER

c) CALCULATE THE AREA OF DIFFERENT SHAPES

USING FUNCTION

31

33

35

7 IMPLEMENTING PYTHON PROGRAM USING

STRINGS

38

8 MODULES AND PYTHON STANDARD LIBRARIES

IMPLEMENTING PROGRAMS USING WRITTEN

40

9 IMPLEMENT COPY FROM ONE FILE TO ANOTHER,

WORD COUNT AND FIND THE LARGEST WORD

USING FILE HANDLING

49

10 a) IMPLEMENTING DIVIDE BY ZERO ERROR USING

EXCEPTION HANDLING

b) WRITE APYTHON PROGRAM TO CHECK THE

VOTERS AGE

c) WRITE APYTHON PROGRAM FOR STUDENT

MARK RANGE VALIDATION

51

53

55

11 EXPLORING PYGAME TOOL 57

12 a) GAME ACTIVITY USING PYGAME CAR RACE

b) BOUNCING BALL IN PYGAME

59

62

Ex. No:1a

DEVELOP A FLOWCHART FOR ELECTRICITY BILLING
Date:

start

Read the unit values

unit<=50 yes

no

unit<=150

yes

no

Unit<=250 yes

no

amt=220+(unit-250)*1.50

amt=25+(unit-50)*0.75

amt=25+(unit-50)*0.75

s_charges=amt*0.20

amt=unit*0.05

S_charges=amt*

Print T_amt

stop

T_amt=amt+s_charges

Ex. No:1b

DEVELOP A FLOWCHART FOR SHOP BILLING

Date:

start

Price=input(“enter the
price of your item”)

yes

Price > 50 no

dis=input(“enter percentage
of discount”)

Print(“price before
discount=rs.”+Price)

Print(“discount
rate=rs.”+dis)

Print(“discount

amount=rs.”+Discount)

Print(“amount after
discount=rs.”Dis_price)

stop

Print(“price=rs.”+Price)

Discount=Price*dis/100

Dis_price=Price-Discount

Ex. No:1c
DEVELOP A FLOWCHART FOR SINE SERIES

Date:

start

Read x, n

y=x

x=x*3.1415/180

Loop

no
i<=n

yes

Print “sin”+(y) print “s”+sum

End

sum = sum + t

t=(t*(-1)*x*x)/(2*i(2*i+1))

t=x, sum=x

Start

Read D,

Ex. No:1d

DEVELOP A FLOWCHART FOR WEIGHT OF STEEL BAR
Date:

Print Wt

Stop

Wt =((D^2)/162.2)*L

Ex. No:2a
EXCHANGE THE VALUES OF TWO VARIABLES

Date:

Aim :

To write a Python program for exchange the values of two variables.

Algorithm :

Step 1 : Start the program.

Step 2 : Get the values from the user.

Step 3 : Swap both the values using temporary variables.

Step 4 : Print the swapped output.

Step 5 : Stop the program.

Program:

a=int(input("Enter the value for A:"))

b=int(input("Enter the value for B:"))

print("Before Exchanging the values")

print("A=",a,"B=",b)

temp=a

a=b

b=temp

print("After Exchanging the values of variables")
print("A=",a,"B=",b)

Output:

Enter the value for A: 10

Enter the value for B: 15

Before Exchanging thevalues

A= 10 B= 15

After Exchanging the values of variables

A= 15 B= 10

Result :

Thus the Python program for swapping two variables was executed successfullywithout any

error.

Ex. No:2b
CIRCULATE THE VALUES OF N VARIABLES

Date:

Aim :

To write a Python program for circulate the values of n variables.

Algorithm :

Step 1 : Start the program.

Step 2 : Get the number of values from user.

Step 3 : Declare the array variable.

Step 4 : Get the list values from user and appendit.

Step 5 : Circulate the list values by using for loop.

Step 6 : Print the circulated output.

Step 7 : Stop the program.

Program :

n=int(input("Enter number of values:"))

list1=[]

for val in range(0,n,1):

ele=int(input("Enter integer:"))

list1.append(ele)

print("Circulating the elements of list",list1)

for val in range(0,n,1):

ele=list1.pop(0)

list1.append(ele)

print(list1)

Output:

Enter number of values:4

Enter integer:10

Circulating the elements of list [10]

Enter integer:20

Circulating the elements of list [10, 20]

Enter integer:30

Circulating the elements of list [10, 20, 30]

Enter integer:40

Circulating the elements of list [10, 20, 30, 40]

[20, 30, 40, 10]

[30, 40, 10, 20]

[40, 10, 20, 30]

[10, 20, 30, 40]

Result :

Thus the Python program for circulate the values of n variables was executed successfully

without any error.

Ex. No:2c
FIND THE DISTANCE BETWEEN TWO POINTS

Date:

Aim :

To write a Python program for distance between two points using built infunctions.

Algorithm :

Step 1 : Start the program.

Step 2 : Import the math module.

Step 3 : Get the four values fromuser.

Step 4 : Calculate the distance between two points by using math.sqrt built in function.

Step 5 : Print the distance between two points output.

Step 6 : Stop the program.

Program:

import math

x1=int(input("Enter the value for X1:"))

y1=int(input("Enter the value for Y1:"))

x2=int(input("Enter the value for X2:"))

y2=int(input("Enter the value for Y2:"))

distance=math.sqrt(((x2-x1)**2)+((y2-y1)**2))

print("The Distance between two point is ",distance)

Output:

Enter the value for X1:2

Enter the value for Y1:3

Enter the value for X2:5

Enter the value for Y2:6

The Distance between two point is 4.242640687119285

Result :

Thus the python program for distance between two points was executed

successfully without any error.

Ex. No:3a
NUMBER SERIES

Date:

Aim :

To write a Python program for number series using conditionals and iterativeloops.

Algorithm :

Step 1 : Start the program.

Step 2 : Initialize the array variables.

Step 3 : Get the values from the user.

Step 4 : Check the range value by using for loop.

Step 5 : Process the N series of numbers until the loop ends.

Step 6 : Append all the numbers one by one.

Step 7 : Print the result.

Step 8 : Stop the program.

Program :

n=int(input("Enter a number:"))

n = n+1

a=[]

for i in range(1,n+1):

print(i,sep="",end="")

if(i<n):

print("+",sep="",end="")

a.append(i)

print("=",sum(a))

print()

Output:

Enter a number:6

1+= 1

2+= 3

3+= 6

4+= 10

5+= 15

6+= 21

7

Result :

Thus the python program for number series using conditionals and iterative loopswere

executed successfully.

Ex. No:3b
NUMBER PATTERNS

Date:

Aim :

To write a python program for number patterns using iterative loops.

Algorithm :

Step 1 : Start the program.

Step 2 : Initialize the number of row values.

Step 3 : Check the range value by using for loop.

Step 4 : Process the number patterns using iterative loops.

Step 5 : Print the result.

Step 6 : Stop the program.

Program :

rows=int(input("Enter the row value:"))

for i in range(1,rows+1):

for j in range(1,i+1):

print(j,end="")

print()

output:

Enter the row value:5

1

12

123

1234
12345

Result:

Thus the python program for number patterns using iterative loops were executed successfully.

Ex. No:3c
PYRAMID PATTERN

Date:

Aim :

To write a Python program for pyramid pattern using iterative loops.

Algorithm :

Step 1 : Start the program.

Step 2 : Initialize the variables.

Step 3 : Get the values from the user.

Step 4 : Check the range value by using for loop.

Step 5 : Calculate the space for pyramid pattern.

Step 6 : Each iteration increment the pattern like * until the loops end

Step 7 : Print the pyramid pattern.

Step 8 : Stop the program.

Program :

rows=int(input("Enter the row value:"))

for i in range(1,rows+1):

for j in range(1,i+1):

print("*",end="")

print()

Output:

Enter the row value:5

*

**

Result :

Thus the python program for pyramid pattern using iterative loops were executed

successfully.

Ex. No:4a
LIBRARY DETAILS

Date:

Aim :

To write a Python program for library details using the concept of tupleoperations.

Algorithm :

Step 1 : Start the program.

Step 2 : Initialize the tuple values.

Step 3 : Do the tuple operations such as index, length, concatenation, repetition,membership

operations.

Step 4 : Process the slicing in the library tuple values.

Step 5 : Print all outputs.

Step 6 : Stop the program.

Program :

library1=("deptbooks","deptjournals","uniquestpapers")

library2=("competitveexamguides","ebooks","ejournals")

print("Indexing position of library1:",library1[1])

print("Numbers of components in library 1",len(library1))

print("Numbers of components in library 2",len(library2))

print("Concatenation of two library",library1+library2)

print("Repetition of library1",library1*2)

print("Membership operator of library1:","ebooks"in library1)

print("Membership operator of library2:","ebooks"in library2)

print("Slicing of library2:",library2[0:2])

Output:

Indexing position of library1:

deptjournalsNumbers of components in library 1 3 Numbers of

components in library 2 3

Concatenation of two library ('deptbooks', 'deptjournals', 'uniquestpapers',

'competitveexamguides', 'ebooks', 'ejournals')

Repetition of library1 ('deptbooks', 'deptjournals', 'uniquestpapers', 'deptbooks','deptjournals',

'uniquestpapers')

Membership operator of library1: FalseMembership

operator of library2: True

Slicing of library2: ('competitveexamguides', 'ebooks')

Result :

Thus the Python program of tuple operation for library details was executedsuccessfully

without any error

Ex. No:4b
MATERIALS REQUIRED FOR CONSTRUCTION OF A BUILDING

Date:

Aim :

To write a Python tuple operations for materials required for construction of abuilding.

Algorithm :

Step 1 : Start the program.

Step 2 : Initialize the tuple values.

Step 3 : Do the tuple operations such as length, concatenation, repetition, membershipoperations.

Step 4 : Process the slicing in the tuple values.

Step 5 : Print all outputs.

Step 6 : Stop the program.

Program :

building1=("bricks","sand","cement")

building2=("tiles","paint","wood")

print("Indexing position of building1:",building1[1])

print("Numbers of components in building1",len(building1))

print("Numbers of components in building2",len(building2))

print("Concatenation of two building",building1+building2)

print("Repetition of building1",building1*2)

print("Membership operator of building1:","components" in building1)

print("Membership operator of building2:","components" in building2)

print("Slicing of building1:",building1[0:1])

Output:

Indexing position of building1: sandNumbers of

components in building1 3 Numbers of

components in building2 3

Concatenation of two building ('bricks', 'sand', 'cement', 'tiles', 'paint', 'wood')Repetition of

building1 ('bricks', 'sand', 'cement', 'bricks', 'sand', 'cement') Membership operator of

building1: False

Membership operator of building2: FalseSlicing of

building1: ('bricks',)

Result :

Thus the Python tuple operations for materials required for construction of abuilding were executed

successfully.

Ex. No:4c
COMPONENTS OF A CAR

Date:

Aim :

To write a Python program to create a component of a car using list operationsfor.

Algorithm:

Step1 : Start the program.

Step 2 : Initialize the list values.

Step 3 : Process all the list operations such as length, concatenation, repetition,

membership operations.

Step 4 : Slice some of the car components in the list values.

Step 5 : Print all outputs.

Step 6 : Stop the program.

Program :

car1=["steering","wheels","brake","engine","seats"]

car2=["accelerator","clutch","gear","horn","indicator","battery"]

print("Indexing position of car2:",car2[1])

print("Numbers of components in car1",len(car1))

print("Numbers of components in car 2",len(car2))

print("Concatenation of two car",car1+car2)

print("Repetition of car1",car1*2)

print("Membership operator of car1:","components"in car1)

print("Membership operator of car2:","components"in car2)

print("Slicing of car2:",car2[0:2])

Output:

Indexing position of car2: clutch

Numbers of components in car1 5

Numbers of components in car 2 6

Concatenation of two car ['steering', 'wheels', 'brake', 'engine', 'seats', 'accelerator',

'clutch', 'gear', 'horn', 'indicator', 'battery']

Repetition of car1 ['steering', 'wheels', 'brake', 'engine', 'seats', 'steering', 'wheels',

'brake', 'engine', 'seats']

Membership operator of car1: False

Membership operator of car2: False

Slicing of car2: ['accelerator', 'clutch']

Result :

Thus the Python list operation for components of a car were executed successfully.

Ex. No:5a
IMPLEMENT THE PROGRAMMING LANGUAGE DETAILS USING

SET OPERATIONS Date:

Aim :

To write a Python program for implementing the programming language detailsusing set

operations.

Algorithm :

Step 1 : Start the program.

Step 2 : Initialize the set values from user.

Step 3 : Implement the set operations such as union, intersection and set difference.

Step 4 : Print all outputs.

Step 5 : Stop the program.

Program :

lang1={"c","c++","python","java"}

lang2={"c","python","c#","net"}

print("The set1 language are",lang1)

print("The set2 language are",lang2)

print("Union of two sets are",lang1.union(lang2))

print("Intersection of two sets are",lang1.intersection(lang2))

print("Difference of two sets are",lang1.difference(lang2))

Output:

The set1 language are {'c', 'java', 'c++', 'python'}

The set2 language are {'c', 'net', 'c#', 'python'}

Union of two sets are {'net', 'java', 'c++', 'python', 'c', 'c#'}

Intersection of two sets are {'c', 'python'}

Difference of two sets are {'java', 'c++'}

Result :

Thus the python set operation for programming language details was executed

successfully.

Ex. No:5b
IMPLEMENT THE COMPONENTS OF AN AUTOMOBILE USING

DICTIONARIES Date:

Aim :

To write a Python program for implementing the components of an automobile using

dictionaries.

Algorithm :

Step 1 : Start the program.

Step 2 : Initialize the dictionaries values from user.

Step 3 : Implement the dictionaries operations such as add items, accessing the items

and check the availability status using membership operator.

Step 4 : Print all outputs.

Step 5 : Stop the program.

Program :

auto1={"transmission":"clutch","body":"steering system","auxiliary":"seats"}

print("Items in the dictionaries:",auto1)

auto1["body2"]="wheels"

print("Add element in the dictionaries:",auto1)

print("Accessing single elements in the dictionaries:",auto1["body"])

print("Item in the dictionaries or not:","body" in auto1)

print("Item in the dictionaries or not:","head" in auto1)

Output:

Items in the dictionaries: {'transmission': 'clutch', 'body': 'steering system', 'auxiliary':

'seats'}

add element in the dictionaries: {'transmission': 'clutch', 'body': 'steering system',

'auxiliary': 'seats', 'body2': 'wheels'}

Accessing single elements in the dictionaries: steering system

Item in the dictionaries or not: True

Item in the dictionaries or not: False

Result :

Thus the Python dictionaries operation for components of an automobile wasexecuted

successfully

Ex.No: 6a FACTORIAL USING FUNCTIONS

Date:

Aim :

To write a Python program to find factorial using user defined functions.

Algorithm :

Step 1 : Start the program.

Step 2 : Initialize the value for num variable.

Step 3 : Define the user defined function factorial.ite

Step 4 : Check the value using conditional statement.

Step 5 : Calculate the factorial by using while loop.

Step 6 : Print the factorial result.

Step 7 : Stop the program.

Program :

def fact(n):

if n<0:

return 0

elif n==0 or n==1:

return 1

else:

fact=1

while(n>1):

fact*=n

n-=1

return fact

num=int(input("Enter the number:"));

print("Factorial of :",num,"is",fact(num))

Output :

Enter the number:4

Factorial of: 4 is 24

Result :

Thus the python program for factorial using user defined functions was executed

successfully.

Aim :

To write a Python program to calculate the largest number in the list using

functions.

Algorithm :

Step 1 : Start the program.

Step 2 : Initialize the list values.

Step 3 : Call the appropriate user defined function (function name: large()).

Step 4 : Declare the first element as max withinthe def function.

Step 5 : Compare each element by using for loop.

Step 6 : Find the largest element by using ifconditions.

Step 7 : Then return the largest element present in the initialized list.

Step 8 : Stop the program.

Program:

def large(arr):

max = arr[0]

for elem in arr:

if(elem > max):

max = elem

return max

list_1 = [56528,1294,314,313,122]

result = large(list_1)

print(result)

Output :

56528

Date:

CALCULATE THE LARGEST

NUMBER

Ex.N0: 6b

Result :

Thus the python program for largest number in the list using functions was

executed successfully.

Aim :

To write a Python program to calculate the area of different shapes using

functions.

Algorithm :

Step 1 : Start the program.

Step 2 : Get the shape from user for calculating the area.

Step 3 : Call the appropriate user defined function.

Step 4 : Calculate the area of different shapes like rectangle, square, triangle, circle and

parallelogram.

Step 5 : Print the area value.

Step 6 : Stop the program.

Program:

def calculate_area(name):

name =name.lower()

if(name=="rectangle"):

l=int(input("Enter rectangle’s length: "))

b=int(input("Enter rectangle’s breadth: "))

r_area=l*b

print(f"The area of rectangle is {r_area}")

elif(name=="square"):

s=int(input("Enter square’s side length:"))

sqt_area=s*s

print(f"The area of square is {sqt_area}")

elif(name=="triangle"):

h=int(input("Enter square’s height length: "))

b=int(input("Enter square’s breadth length: "))

tri_area=0.5*b*h

print(f"The area of triangle is {tri_area}")

elif(name=="circle"):

r=int(input("Enter circle’s radius length: "))

pi=3.14

circle_area=pi*r*r

print(f"The area of triangle is {circle_area}")

b=int(input("Enter parallelogram’s base length: "))

Date :

CALCULATE THE AREA OF DIFFERENT SHAPES USING

FUNCTION

Ex.No: 6c

else:

print("sorry! This is shape is not available")

if(name=="main"):

print("Calculate Shape Area")

shape_name=input("Enter the name of shape whose area you want to find: ")

calculate_area(shape_name)

Output :

Enter the name of shape whose area you want to find:square

Enter square’s side length:4

The area of rectangle is16

Result :

Thus the python program for area of different shapes using functions was

executed successfully.

Ex.No: 7 IMPLEMENTING A PYTHON PROGRAM USING STRINGS

Date:

Aim :

To write a python program for implementing the string methods for reversing the

string, counting the character in a string, replacing a character in the string ad check

whether the given string is palindrome or not.

Algorithm :

Step 1 : Start the program.

Step 2 : Get the string from the user in the variable(str).

Step 3 : Using the string method [::-1], for displaying the reverse of the string.

Step 4 : Using the function isPalindrome, check whether the string is palindrome or not.

Step 5 : Using the string method len(str), for finding the length of the given string.

Step 6 : Stop the program.

Program:

s=input(‘Enter a string:’)

r=s[::-1]

if r==s:

print(‘The given string is Palindrome’)

else:

print(‘The given string is NOT Palindrome’)

print(‘The length of a string:’,len(s))

print(‘The reverse string:’,r)

Output:

Enter a string: Mailam

The given string is NOT palindrome

The length of a string:6

The reverse string:maliaM

Result :

Thus the python program for implementing the string methods for reversing the

string, counting the character in a string and check whether the given string is

palindrome or not was implemented successfully.

Ex. No: 8 MODULES AND PYTHON STANDARD LIBRARIES

IMPLEMENTING PROGRAMS USING WRITTEN
Date:

Pandas

The word pandas is an acronym which is derived from “python and data analysis“and “panel data “.

Pandas is a software library written for the python programming language. It is used for data

manipulation and analysis.

It provides special data structures and operations for the manipulation ofnumerical tables and time

series.Pandas is a free software released under the three-clause BSD license. Two important

structures of pandas :

Series : A series is a one dimensional labeled array like object. It is capable of holding any data

type, e.g. integers, floats, strings, python objects and so on. It can be seen as a data structure withtwo

arrays: one functioning as the index, i.e.the labels, and the other one contains the actual data.

DataFrame : Like a spreadsheet or excel sheet, a DataFrame object contains anordered collectionof

columns. Each column consists of a unique data type, but different columns can have different

types, e.g. the first column may consist of integers, while the second one consists of Boolean

values and so on.

To import pands and number in you python script, add the below piece of code :Import pandas aspd

Import numpy as npNumpy

Numpy means “ Numeric Python “ or “ Numerical Python “.

Numpy is the fundamental package for scientific computing in python.

It is a python library that provides a multidimensional array object, various derived objects (such as

masked arrays and matrices), and an assortment ofroutines for fast operations on arrays, including

mathematical, logical, shape manipulation, sorting, selecting, i/o, discrete fourier transforms, basic

linear algebra, basic statistical operations, random simulation and much more.

Program :

import numpy as np

arr=np.array([[-1,2,0,4],[4,-0.5,6,0],[2.6,0,7,8],[3,-7,4,2.0]])

print("Intial array:”)

print(arr) sliced_arr=ar

r[:2,::2]

print("Array with first two rows""alternate columns(0 and 2):\n",sliced_arr)

index_arr=arr[[1,1,0,3],[3,2,1,0]]

print("\n Elements at indices(1,3),(1,2),(0,1),(3,0):\n",index_arr)

Output:

Intial array:

[[-1. 2. 0. 4.]

[4. -0.5 6. 0.]

[2.6 0. 7. 8.]

[3. -7. 4. 2.]]

Array with first two rows alternate columns(0 and2):

[[-1. 0.]

[4. 6.]]

Elements at indices(1,3),(1,2),(0,1),(3,0):[0. 6. 2. 3.]

Matplotlib

Matplotlib is a python 2d plotting library which produces publication quality

figures in a variety of hardcopy formats and interactive environments across

platforms.

It is an amazing visualization library in python for 2d plots of arrays.

Matplotlib is a multi-platform data visualization library built on numpy arrays and

designed to work with the broader scipy stack.

One of the greatest benefits of visualization is that it allows us visual access to

huge amounts of data in easily digestible visuals. Matplotlib cosists of several

plots like line, bar, scatter, histogram, etc.

Importing matplotlib :

From matplotlib import pyplot as plt

orImport matplotlib.pyplot as plt

Basic plots in matplotlib :

Matplotlib comes with a wide variety of plots.

Plots help to understand trends, patterns, and to make correlations.

They’re typically instruments for reasoning about quantitative information. Some

of the sample plots are covered here.

Program 1:

from matplotlib import pyplot as

pltx=[5,2,9,4,7]

y=[10,5,8,4,2]
plt.plot(x,y)
plot.show()

Output:

Program 2 :

from matplotlib import pyplot as

pltx=[5,2,9,4,7]

y=[10,5,8,4,2]
plt.bar(x,y)
plt.show()

Output:

Scipy

Scipy stands for scientific python.

Scipy is a free and open source python library used for scientific computing and

technical computing.

It is a collection of mathematical algorithms and convenience functions built on

the numpy extensions of python.

It adds significant power to the interactive python session by providing the user

with high-level commands and classesfor manipulating and visualizing data.

As mentioned earlier, scipy builds on numpy and therefore if you import scipy,

there is no need to import numpy.

Install scipy using pip

Install the scipy library by using the pip command.

Pip is basically a recursive acronym which stands for ‘pip installs packages’.

It is a standard package manager which can be installed in most of the operating

systems.

To install, run the following command in the terminal: pip install scipy

Install scipy using anaconda

Conda install –c anaconda scipy

Sub packages in scipy

Many dedicated software tools are necessary for python scientific computing, and

scipy is one such tool or library offering many pythn modules that we can work

with in order to perform complex operations.

The following table shows some of the modules or sub-packages that can be used for

computing:

SI.NO. SUB-PACKAGE DESCRIPTION

1. scipy.cluster Cluster algorithms are used to

vectorquantization/kmeans

2. scipy.constants It represents physical and mathematical constants.

3. scipy.fftpack It is used for fourier transform.

4. scipy.integrate Integration routines.

5. scipy.interpolation Interpolation.

6. scipy.linalg It is used for linear algebra routine.

7. scipy.io It is used for data input and output.

8. scipy.ndimage It is used for the n-dimension image.

9. scipy.odr Orthogonal distance regression.

10. scipy.optimize It is used for optimization.

11. scipy.signal It is used in signal processing.

12. scipy.sparse Sparse matrices and associated routines.

13. scipy.spatial Spatial data structures and algorithms.

14. scipy.special Special function.

15. scipy.stats Statistics.

16. scipy.weaves It is a tool for writing

Result :

Thus, we study about pandas, numpy, matplotlib, scipy applications, installationprocedure and also

implement the sample program successfully.

Aim :

To write a python program for implementing the file handling operation for

performing word count in the file, longest word in the file and copy the content of one

file into another.

Algorithm :

Step 1 : Start the program.

Step 2 : Create a text file as text1.txt and type the content in it.

Step 3 : Open the filef1 (“text1.txt”) in the read mode.

Step 4 : Create the filef2 (“text2.txt”) in the write mode.

Step 5 : Read the content from the file1 and write into file2.

Step 6 : Close the two files f1 and f2.

Step 7 : Open the filef3 (“text1.txt”) in the read mode.

Step 8 : Read the contents from the file f3 using the method read().split() and stored it

in the variables “words”.

Step 9 : Print the word count in the file.

Step 10 : Using for loop and if statement, print the longest word in the file.

Step 11 : Stop the program.

Program:

from shutil import copyfile

sfile = input("Enter Source File's Name: ")

tfile = input("Enter Target File's Name: ")

copyfile(sfile, tfile)

print(“File successfully copied”)

f = open(tfile, "r")

data = f.read()

words = data.split(" ")

i=0

wordcount= {}

while i < len(words):

item = words[i]

wordcount[item] = words.count(item)

i=i+1

print(wordcount)

f.close()

Date:

IMPLEMENT COPY FROM ONE FILE TO ANOTHER, WORD COUNT AND FIND

THE LARGEST WORD USING FILE HANDLING

Ex.No: 9

Output:

File successfully copied

#myfile.txt

hello world hello python

{'hello': 2, 'world': 1, 'python': 1}

Result :

Thus the python program for implementing the file handling operation for

performing word count in the file, longest word in the file and copy the content of one

file into another was implemented successfully.

Ex.No: 10a IMPLEMENTING DIVIDE BY ZERO ERROR USING EXCEPTION HANDLING

Date:

Aim :

To write a python program to implement divide by zero error using exception

handling.

Algorithm :

Step 1 : Start the program.

Step 2 : Get the dividend and divisor values from the user.

Step 3 : Calculate the quotient value using try block.

Step 4 : Check the divide by zero error in catch block.

Step 5 : Print the exception handling output.

Step 6 : Stop the program.

Program:

n=int(input("Enter the value of n:"))

d=int(input("Enter the value of d:"))

c=int(input("Enter the value of c:"))

try:

q = n/(d-c)

print(“Quotient:”,q)

except ZeroDivisionError:

Print(“Division by Zero !”)

Output:

Enter the value of n: 10

Enter the value of d: 5

Enter the value of c: 5

Division by Zero!

Result :

Thus the python program for divide by zero error using exception handling was implemented successfully.

Ex.No: 10b WRITE A PYTHON PROGRAM TO CHECK THE VOTER’S AGE

Date:

Aim :

To write a python program to check the voter’s age validity.

Algorithm :

Step 1 : Start the program.

Step 2 : Get the voter’s name and age from the user.

Step 3 : Calculate the eligibility of voter’s age in try block.

Step 4 : Check the value error in catch block.

Step 5 : Print the eligibility status of voter’s age using exception handling.

Step 6 : Stop the program.

Program:

#this program check voting eligibility

def main():

#single try statement can have multiple except statements.

try:

age=int(input("Enter your age"))

if age>18:

print("Eligible to vote")

else:

print("Not eligible to vote")

except ValueError:

print("age must be a valid number")

except IOError:

print("Enter correct value")

#generic except clause, which handles any exception.

except:

Output:

Enter your age25

Eligible to vote

Enter your age15

Not eligible to vote

Result :

Thus the program to check the voter’s age validity was implemented and the

program executed , verified successfully.

Ex.No: 10c WRITE A PYTHON PROGRAM FOR STUDENT MARK RANGE VALIDATION

Date:

AIM:

To write a python program for student mark range validation

ALGORITHM:

STEP 1. User must enter 5 different values and store it in separate variables.

STEP 2. Then sum up all the five marks and divide by 5 to find the average of the marks.

STEP 3. If the average is greater than 90, “Grade: A” is printed.

STEP 4. If the average is in between 80 and 90, “Grade: B” is printed.

STEP 5. If the average is in between 70 and 80, “Grade: C” is printed.

STEP 6. If the average is in between 60 and 70, “Grade: D” is printed.

STEP 7. If the average is anything below 60, “Grade: F” is printed.

PROGRAM:

sub1=int(input("Enter marks of the first subject: "))

sub2=int(input("Enter marks of the second subject: "))

sub3=int(input("Enter marks of the third subject: "))

sub4=int(input("Enter marks of the fourth subject: "))

sub5=int(input("Enter marks of the fifth subject: "))

avg=(sub1+sub2+sub3+sub4+sub4)/5

avg = round(avg)

if(avg>=90):

print("Grade: A")

elif(avg>=80&avg<90):

print("Grade: B")

elif(avg>=70&avg<80):

print("Grade: C")

elif(avg>=60&avg<70):

print("Grade: D")

else:

print("Grade: F")

Output:

Case 1:

Enter marks of the first subject: 85

Enter marks of the second subject: 95

Enter marks of the third subject: 99

Enter marks of the fourth subject: 93

Enter marks of the fifth subject: 100

Grade: A

Case 2:

Enter marks of the first subject: 81

Enter marks of the second subject: 72

Enter marks of the third subject: 94

Enter marks of the fourth subject: 85

Enter marks of the fifth subject: 80

Grade: B

Result :

Thus the python program for student mark range validation was implemented

and checked successfully.

Ex. No:11
EXPLORING PYGAME TOOL

Date:

Exploring pygame 1 - Discovering the library

Published on January 15, 2017
Game development is one of the most common reasons to start to study programming. With me it
was not different, despite not following the game developer path, this was always a field that caught
my attention.
I’m creating this series of posts to learn more about the game development basics and to share my
discoveries with everyone. I’ll use the pygame library as tool and I will start by the most basic
principles of game development until the creation of a single player pong like game.
To reach this goal I’ll start with Structured Programming focused at the basics of game and
pygame to make it more comfortable for beginners. As the series goes I’ll refactor the code to

introduce Object Oriented Programming concepts.
The code used on this series will be running at Python 3
Pygame
Pygame is a set of Python modules designed to make games. It uses SDL which is a cross-platform

library that abstracts the multimedia components of a computer as audio and video and allows an

easier development of programs that uses this resources.
Installation
Before starting the installation process you must have python installed at your system. In case you
don’t have it check this installation guide first.
The pygame installation itself can be different from an OS and can be checked for more details at its

[official install guide](http://www.pygame.org/wiki/GettingStarted#Pygame Installation).
But, to install it into a Debian based system such as Ubuntu you must first make sure its
dependencies are installed

1. Open command prompt in windows 7
2. C:\users\admin\python –m pip install –U pygame
3. Numpy files are downloading from Internet and installed successfully.

CODE
Creating Shapes

import pygame, sys
from pygame.locals import *
Initialize program
pygame.init()
Assign FPS a value
FPS = 30
FramePerSec = pygame.time.Clock()
Setting up color objects
BLUE = (0, 0, 255)
RED = (255, 0, 0)
GREEN = (0, 255, 0)
BLACK = (0, 0, 0)
WHITE = (255, 255, 255)
Setup a 300x300 pixel display with caption
DISPLAYSURF = pygame.display.set_mode((300,300))
DISPLAYSURF.fill(WHITE)
pygame.display.set_caption("Example")

http://www.pygame.org/
https://en.wikipedia.org/wiki/Structured_programming
https://en.wikipedia.org/wiki/Object-oriented_programming
https://www.libsdl.org/
https://docs.python-guide.org/starting/installation/
http://www.pygame.org/wiki/GettingStarted#Pygame

Creating Lines and Shapes
pygame.draw.line(DISPLAYSURF, BLUE, (150,130), (130,170))
pygame.draw.line(DISPLAYSURF, BLUE, (150,130), (170,170))
pygame.draw.line(DISPLAYSURF, GREEN, (130,170), (170,170))
pygame.draw.circle(DISPLAYSURF, BLACK, (100,50), 30)
pygame.draw.circle(DISPLAYSURF, BLACK, (200,50), 30)
pygame.draw.rect(DISPLAYSURF, RED, (100, 200, 100, 50), 2)
pygame.draw.rect(DISPLAYSURF, BLACK, (110, 260, 80, 5))

Beginning Game Loop
while True:

pygame.display.update()
for event in pygame.event.get():

if event.type == QUIT:
pygame.quit()
sys.exit()

FramePerSec.tick(FPS)

Result:

Thus the pygame exploring program was executed successfully without any error

and required output isverified.

Ex. No:12a
Game activity using Pygame car race

Date:

Aim:

To write a Python program to car race in Pygame.

Algorithm:

Step 1: Import the required packages

Step 2: Define the required variables

Step 3: Define the screen space to display the car race in that space

Program:

import random

from time import sleep

import pygame

class CarRacing:

def init (self):

pygame.init()

self.display_width = 800

self.display_height = 600

self.black = (0, 0, 0)

self.white = (255, 255, 255)

self.clock = pygame.time.Clock()

self.gameDisplay = None

self.initialize()

def initialize(self):

self.crashed = False

self.carImg = pygame.image.load('.\\img\\car.png')

self.car_x_coordinate = (self.display_width * 0.45)

self.car_y_coordinate = (self.display_height * 0.8)

self.car_width = 49

enemy_car

self.enemy_car = pygame.image.load('.\\img\\enemy_car_1.png')

self.enemy_car_startx = random.randrange(310, 450)

self.enemy_car_starty = -600

self.enemy_car_speed = 5

self.enemy_car_width = 49

self.enemy_car_height = 100
Background

self.bgImg = pygame.image.load(".\\img\\back_ground.jpg")

self.bg_x1 = (self.display_width / 2) - (360 / 2)

self.bg_x2 = (self.display_width / 2) - (360 / 2)

self.bg_y1 = 0

self.bg_y2 = -600

self.bg_speed = 3

self.count = 0

def car(self, car_x_coordinate, car_y_coordinate):

self.gameDisplay.blit(self.carImg, (car_x_coordinate, car_y_coordinate))

def racing_window(self):

self.gameDisplay = pygame.display.set_mode((self.display_width,

self.display_height))

pygame.display.set_caption('Car Dodge')

self.run_car()

def run_car(self):

while not self.crashed:

for event in pygame.event.get():

if event.type == pygame.QUIT:

self.crashed = True

print(event)

if (event.type == pygame.KEYDOWN):

if (event.key == pygame.K_LEFT):

self.car_x_coordinate -= 50

print ("CAR X COORDINATES: %s" % self.car_x_coordinate)

if (event.key == pygame.K_RIGHT):

self.car_x_coordinate += 50

print ("CAR X COORDINATES: %s" % self.car_x_coordinate)

print ("x: {x}, y: {y}".format(x=self.car_x_coordinate, y=self.car_y_coordinate))

self.gameDisplay.fill(self.black)

self.back_ground_raod()

self.run_enemy_car(self.enemy_car_startx, self.enemy_car_starty)

self.enemy_car_starty += self.enemy_car_speed

if self.enemy_car_starty > self.display_height:

self.enemy_car_starty = 0 - self.enemy_car_height

self.enemy_car_startx = random.randrange(310, 450)

self.car(self.car_x_coordinate, self.car_y_coordinate)

self.highscore(self.count)

self.count += 1

if (self.count % 100 == 0):

self.enemy_car_speed += 1

self.bg_speed += 1

if self.car_y_coordinate < self.enemy_car_starty + self.enemy_car_height:

if self.car_x_coordinate > self.enemy_car_startx and self.car_x_coordinate <

self.enemy_car_startx + self.enemy_car_width or self.car_x_coordinate + self.car_width >

self.enemy_car_startx and self.car_x_coordinate + self.car_width < self.enemy_car_startx
+ self.enemy_car_width:

self.crashed = True

self.display_message("Game Over !!!")

if self.car_x_coordinate < 310 or self.car_x_coordinate > 460:

self.crashed = True

self.display_message("Game Over !!!")

pygame.display.update()

self.clock.tick(60)

def display_message(self, msg):

font = pygame.font.SysFont("comicsansms", 72, True)

text = font.render(msg, True, (255, 255, 255))

self.gameDisplay.blit(text, (400 - text.get_width() // 2, 240 - text.get_height() // 2))

self.display_credit()

pygame.display.update()

self.clock.tick(60)

sleep(1)

car_racing.initialize()

car_racing.racing_window()

def back_ground_raod(self):

self.gameDisplay.blit(self.bgImg, (self.bg_x1, self.bg_y1))

self.gameDisplay.blit(self.bgImg, (self.bg_x2, self.bg_y2))

self.bg_y1 += self.bg_speed

self.bg_y2 += self.bg_speed

if self.bg_y1 >= self.display_height:

self.bg_y1 = -600

if self.bg_y2 >= self.display_height:

self.bg_y2 = -600

def run_enemy_car(self, thingx, thingy):

self.gameDisplay.blit(self.enemy_car, (thingx, thingy))

def highscore(self, count):

font = pygame.font.SysFont("arial", 20)

text = font.render("Score : " + str(count), True, self.white)

self.gameDisplay.blit(text, (0, 0))

def display_credit(self):

font = pygame.font.SysFont("lucidaconsole", 14)

text = font.render("Thanks for playing!", True, self.white)

self.gameDisplay.blit(text, (600, 520))

if name == ' main ':

car_racing = CarRacing()

car_racing.racing_window()

Result:

Thus the program executed successfully without any error and required output is

verified.

Ex.No: 12b BOUNCING BALL IN PYGAME

Date:

Aim:

To write a Python program to bouncing ball in Pygame.

Algorithm:

Step 1: Import the required packages
Step 2: Define the required variables
Step 3: Define the screen space to display the bouncing balls in that space

Program:
SIMULATE BOUNCING BALL.
import pygame
pygame.init()
window_w=800
window_h=600
white=(255,255,255)
green=(0,255,0)
black=(0,0,0)
FPS=120
window=pygame.display.set_mode((window_w,window_h))
pygame.display.set_caption("Game: ")
clock = pygame.time.Clock()
BLACK=(0,0,0)

def game_looop():

block_size=20
lock_size=10
radius=10
velocity=[1,1]
pos_x=window_w/2
pos_y=window_h/2
running = True
while running:

for event in pygame.event.get():
if event.type==pygame.QUIT:

pygame.quit()
quit()

pos_x +=velocity[0]
pos_y +=velocity[1]
if pos_x + block_size > window_w or pos_x <0:

velocity[0]=-velocity[0]
if pos_y + block_size > window_h or pos_y <0:

velocity[1]=-velocity[1]
#window.fill(white)
window.fill(black)
#pygame.draw.rect(window,black,[pos_x,pos_y,block_size,lock_size])
pygame.draw.circle(window,green,[pos_x,pos_y],radius)
pygame.display.update()
clock.tick(FPS)

game_looop()

Output:

Result:

Thus the program executed successfully without any error and required output is

verified.

	DEPARTMENT OF
	ARTIFICIAL INTELLIGENCE AND DATA SCIENCE ENGINEERING
	Aim :
	Algorithm :
	Program:
	Output:
	Result :
	Aim : (1)
	Algorithm : (1)
	Program :
	Output: (1)
	Result : (1)
	Aim : (2)
	Algorithm : (2)
	Program: (1)
	Output: (2)
	Result : (2)
	Aim : (3)
	Algorithm : (3)
	Program : (1)
	Output: (3)
	Result : (3)
	Aim : (4)
	Algorithm : (4)
	Program : (2)
	output:
	Result:
	Aim : (5)
	Algorithm : (5)
	Program : (3)
	Output: (4)
	Result : (4)
	Aim : (6)
	Algorithm : (6)
	Output: (5)
	Result : (5)
	Aim : (7)
	Algorithm : (7)
	Output: (6)
	Result : (6)
	Aim : (8)
	Algorithm:
	Output: (7)
	Result : (7)
	Aim : (9)
	Algorithm : (8)
	Program : (4)
	Output: (8)
	Result : (8)
	Aim : (10)
	Algorithm : (9)
	Program : (5)
	Output: (9)
	Result : (9)
	Aim : (11)
	Algorithm : (10)
	Program : (6)
	Output :
	Result : (10)
	Aim : (12)
	Algorithm : (11)
	Program: (2)
	Output : (1)
	Result : (11)
	Aim : (13)
	Algorithm : (12)
	Program: (3)
	Output : (2)
	Result : (12)
	Aim : (14)
	Algorithm : (13)
	Program: (4)
	Output: (10)
	Result : (13)

	Pandas
	Program :
	Output:
	Matplotlib
	Program 1:
	Program 2 :
	Aim :
	Algorithm :
	Program:
	Output:
	Result :
	Aim : (1)
	Algorithm : (1)
	Program: (1)
	Output: (1)
	Result : (1)
	Aim : (2)
	Algorithm : (2)
	Program: (2)
	Output: (2)
	Result : (2)
	AIM:
	ALGORITHM:
	PROGRAM:
	Output: (3)
	Result : (3)
	Result:
	Aim:
	Algorithm:
	Result: (1)
	Output: (4)

