

EMBEDDED SYSTEM LABORATORY

MANUAL

(ELECTRONICS AND

COMMUNICATION ENGINEERING)

REGULATION-2017

AUTHOR:

K. PAVITHRA., M.E

GENERAL GUIDELINES AND SAFETY NSTRUCTIONS

1. Sign in the log register as soon as you enter the lab and strictly observe your lab timings.

2. Strictly follow the written and verbal instructions given by the teacher / Lab

Instructor. If you do not understand the instructions, the handouts and the procedures,

ask the instructor or teacher.

3. Never work alone! You should be accompanied by your laboratory partner and /

or the instructors / teaching assistants all the time.

4. It is mandatory to come to lab in a formal dress and wear your ID cards.

5. Do not wear loose-fitting clothing or jewels in the lab. Rings and necklaces are

usual excellent conductors of electricity.

6. Mobile phones should be switched off in the lab. Keep bags in the bag rack.

7. Keep the labs clean at all times, no food and drinks allowed inside the lab.

8. Intentional misconduct will lead to expulsion from the lab.

9. Do not handle any equipment without reading the safety instructions. Read the

handout and procedures in the Lab Manual before starting the experiments.

10. Do your wiring, setup, and a careful circuit checkout before applying power.

Do not make circuit changes or perform any wiring when power is on.

11. Avoid contact with energized electrical circuits.

12. Do not insert connectors forcefully into the sockets.

13. NEVER try to experiment with the power from the wall plug.

14.Immediately report dangerous or exceptional conditions to the Lab instructor /

teacher: Equipment that is not working as expected, wires or connectors are

broken, the equipment that smells or “smokes”. If you are not sure what the

problem is or what's going on, switch off the Emergency shutdown.

15. Never use damaged instruments, wires or connectors. Hand over these parts to

the Lab instructor/Teacher.

16. Be sure of location of fire extinguishers and first aid kits in the laboratory.

17. After completion of Experiment, return the bread board, trainer kits, wires, CRO

probes and other components to lab staff. Do not take any item from the lab without

permission.

18. Observation book and lab record should be carried to each lab. Readings of current

lab experiment are to be entered in Observation book and previous lab experiment

should be written in Lab record book. Both the books should be corrected by the

faculty in each lab.

19. Special Precautions during soldering practice

a. Hold the soldering iron away from your body. Don't point the iron towards

you. b. Don't use a spread solder on the board as it may cause short circuit.

c. Do not overheat the components as excess heat may damage the components/board.

d. In case of burn or injury seek first aid available in the lab or at the college

dispensary.

PREFACE

 This book on “EMBEDDED SYSTEMS LABORATORY MANUAL

(Electronics and communication Engineering)” covers the complete syllabus

prescribed by the Anna University, Chennai for the seventh semester B.E/

B.Tech. Degree course under Outcome Based Education Credit System with

the regulation 2017.

 This book covers Study of ARM evaluation system, Interfacing ADC and

DAC, Interfacing LED and PWM, Interfacing real time clock and serial port,

Interfacing keyboard and LCD, Interfacing EPROM and interrupt, Mailbox,

Interrupt performance characteristics of ARM and FPGA, Flashing of LEDS,

Interfacing stepper motor and temperature sensor, Implementing zig-bee

protocol with ARM.

 We hope that this book will be useful to both teachers and students. Finally

we would request the readers to kindly send their valuable comments and

suggestions towards the improvement of the manual and the same will be

gratefully acknowledge.

 Any suggestion from the reader for the betterment of this book can be

dropped into kpavi.05ap@gmail.com

Mrs.K.PAVITHRA M.E.

mailto:kpavi.05ap@gmail.com

ACKNOWLEDGEMENT

 We are thankful to and fortunate enough to get constant encouragement,

support and guideline from Chairman Thiru.S.Ramadoss, Secretary &

Treasurer Mr.G.Thamotharan for his blessings to complete the book

successfully.

We would not forget to remember our Principal Dr.T.K.Gopinathan and

Vice-Principal Dr.D.Saravanan for his constant assistance in preparing this

book.

ANNAI MIRA

College of engineering & technology

Nh- 46 chennai-bengaluru highway, vellore dist-632503

DEPARTMENT OF ELECTRONICS AND COMMUNICATION

ENGINEERING

EC 8711 – EMBEDDED LABORATORY

 ANNAI MIRA
COLLEGE OF ENGINEERING AND TECHNOLOGY

NH – 46 CHENNAI – BENGALURU HIGHWAY, VELLORE, VELLORE DIST -632503

BONAFIDE CERTIFICATE

NAME OF THE STUDENT : …………………………………….

REGISTER NUMBER : …………………………….............

YEAR / SEMESTER : …………………………….............

SUBJECT CODE / NAME : …………………………….............

BATCH : …………………………………….

 This is to certify that Mr/Ms .. With

Register number ………………………… has successfully completed

the ... Laboratory

during the academic year ……………….

The practical examination should be held on ……………..

Staff – Incharge Head of the department

Internal – examiner External – examiner

EC8711 – EMBEDDED LABORATORY

INDEX

S.No Date Name of the Experiment Pg.no Signature

LED INTERFACING USING LPC 2148

Ex.No :

Date :

Aim :

To write a program in Keil – C to blink the LED with Specific delay using LPC 2148 Controller.

Components Required :

 LPC 2148 Kit with LCD interfacing

 Personal Computer

 Keil μ-Vision – 4 Software

Theory :

LED (Light Emitting Diodes)

Light Emitting Diodes (LED) is the most commonly used components, usually for displaying

pins digital states. Typical uses of LEDs include alarm devices, timers and confirmation of user input

such as a mouse click or keystroke.

Interfacing LED with LPC2148

Flash a LED using LPC2148 Primer Board. It works by turning ON a LED & then turning it OFF

& then looping back to START. However the operating speed of microcontroller is very high so the

flashing frequency will also be very fast to be detected by human eye.

The ARM7 LPC2148 Primer board has eight numbers of point LEDs, connected with I/O Port

lines (P1.16 – P1.23) to make port pins high.

Circuit Diagram to Interface LED with LPC :

Program :

#include "lpc214x.h"

//PLL Register Values

#define MSEL 4 //M-1 since M=5

#define PSEL 1<<5 //P-1 since P=2

#define LEDS 0xFF<<8 //P0.8 to P0.15

void delayms(int n)

{

int i,j;

for(i=0;i<n;i++)

{for(j=0;j<1007;j++) //5035 for 60Mhz ** 1007 for 12Mhz

{;}

}

}

/* Function Sets PLL0 So CPU Clock=60Mhz PCLK=15Mhz */

void clock_select(void)

{

//Fosc = 12Mhz //Select CCLK = 60Mhz & Fcco = 240Mhz

PLL0CFG = PSEL | MSEL;

//PLL FEED

PLL0FEED=0xAA;

PLL0FEED=0x55;

PLL0CON = 3; //Enable PLL0

//PLL FEED

PLL0FEED=0xAA;

PLL0FEED=0x55;

VPBDIV = 0; //PCLK = CCLK/4 So PCLK = 15Mhz

}

/* */

int main(void)

{

clock_select();

IODIR0 = LEDS; //Configure Port0 as output Port

PINSEL0 = 0; //Configure Port0 as General Purose IO

while(1)

{

IOSET0 = LEDS; //Set P0.15-P0.8 to '1'

delayms(1000); //1 sec Delay

IOCLR0 = LEDS; //Set P0.15-P0.8 to '0'

delayms(1000); //1 Sec Delay

}

}

/* */

Algorithm :

 Open Keil μ-Vision 4

 Create a Project and Choose the Hardware tool

 Create a file , type the Program and Save it as .c format

 Add the files to Source Group

 Run the program and get the error free output.

 Connect hardware to the PC and Download the Program using Flash Magic

 Verify the output.

Result :

Thus the Program to blink the LED with Specific delay using LPC 2148 was written and verified

Successfully using Keil C.

4

LCD INTERFACING USING LPC 2148

Ex.No :

Date :

Aim :

To write a program in Keil – C to display the message on LCD interfacing with LPC 2148

Controller.

Components Required :

 LPC 2148 Kit with LCD interfacing

 Personal Computer

 Keil μ-Vision – 4 Software

Theory :

Various graphical LCDs are available in the market with different

sizes. Here JHD12864E Graphical LCD has been explained. This LCD has a display

format of 128x64 dots and has yellow-green color backlight. Each LCD needs a

controller to execute its internal operations. This LCD uses two KS0108 controllers.

The 128x64 LCD is divided into two equal halves with each half being controlled

by a separate KS0108 controller. Such LCDs (using KS0108 controller) involve paging

scheme, i.e., whole LCD is divided equally into pages.

1. 128x64 LCD implies 128 columns and 64 rows. In total there are 1024 pixels.

2. 128x64 LCD is divided equally into two halves. Each half is controlled by a separate

controller and consists of 8 pages. In above diagram, CS stands for Controller Select.

3. Each page consists of 8 rows and 64 columns. So two horizontal pages make 128

(64x2) columns and 8 vertical pages make 64 rows (8x8).

Algorithm :

 Open Keil μ-Vision 4

 Create a Project and Choose the Hardware tool

 Create a file , type the Program and Save it as .c format

 Add the files to Source Group

 Run the program and get the error free output.

 Connect hardware to the PC and Download the Program using Flash Magic

 Verify the output.

4

Program :

#include <LPC214X.H>
#define LCD_RS 1<<24 //Port1.24

#define LCD_RW 1<<16 //Port0.16
#define LCD_EN 1<<17 //Port0.17

#define LCD_DATA 0xFF<<16 //Port1.16 to 1.23

#define LCD_STS 1<<23 //Port1.23

//Function declaration

int main(void);

void lcdini(void);

void lsts(void);
void lcdctl(unsigned char val1);

void lputc(unsigned char lcr);

void put_s(char *str);
void delay (unsigned int k);

int main(void)
{

IODIR0 = LCD_RW | LCD_EN; //configure LCD r/w & EN as o/p

IODIR1 = LCD_RS; //Configure RS & DATA as o/p

PINSEL0 = 0; // Configure Port0 as General Purpose IO

PINSEL1 = 0; // Configure Port1 as General Purpose IO

IOCLR0=LCD_EN; IOCLR1=LCD_RS; IOSET0=LCD_RW; /* DISABLE LCD TEMPORALY*/
delay(1000); //LCD Power-up Delay

lcdini(); //Initialise LCD

put_s("TEST MESSAGE"); //Print msg

while(1); //Terminate Program

}
/* */
void lcdini()

{

lcdctl(0x38); /* Function Set 2 LINE 5 X 8 CHAR*/

delay(5); /* Waits for 5 Msec. */
lcdctl(0x38); /* Sends Function Set - AGAIN */

delay(5); /* Waits for 5 Msec. */

lcdctl(0x38); /* Sends Function Set - AGAIN */

lsts(); /* Wait Till BUSY=0 */
lcdctl(0x38); /* Sends Function Set - AGAIN*/

lsts(); /* Wait Till BUSY=0 */

lcdctl(0x04); /* Display off */
lsts(); /* Wait Till BUSY=0 */

lcdctl(0x01); /* Clear Display */

lsts(); /* Wait Till BUSY=0 */
lcdctl(0x06); /* Set Entry mode */

lsts(); /* Wait Till BUSY=0 */

lcdctl(0x0c); /* Set Display ON */

}
/******* Checks the LCD Status for busy***************/

void lsts()

{unsigned long int tp1;
IOCLR1=LCD_RS; IOSET0=LCD_RW;

5

do{

IOSET0=LCD_EN;
tp1 = IOPIN1 & LCD_STS;

IOCLR0=LCD_EN;
}while(tp1);

IOCLR0=LCD_EN;

IOCLR0=LCD_RW;

}
/* */

void lcdctl(unsigned char val1)

{ unsigned long int dat;

dat = ((unsigned long int)val1) << 16;
IODIR1 = LCD_RS | LCD_DATA; //Configure RS & DATA as o/p
/* WRITE COMMAND TO CONTROL REGISTER*/

IOCLR1 = LCD_RS;

IOCLR0 = LCD_RW;
IOCLR1 = LCD_DATA;

IOSET1 = dat;

IOSET0=LCD_EN;
IOCLR0=LCD_EN;

IOSET0=LCD_RW;

IODIR1 = LCD_RS; //Configure RS as o/p & DATA as i/p

}
/******* Displays a Character in the LCD ******/

void lputc(unsigned char lcr)

{ unsigned long int dat;
lsts();

dat = ((unsigned long int)lcr)<<16;
IODIR1 = LCD_RS | LCD_DATA; //Configure RS & DATA as o/p
IOSET1=LCD_RS; IOCLR0=LCD_RW;

IOCLR1 = LCD_DATA;

IOSET1 = dat;
IOSET0=LCD_EN;

IOCLR0=LCD_EN;

IOSET0=LCD_RW;
IODIR1 = LCD_RS; //Configure RS as o/p & DATA as i/p

}
/* */

void put_s(char *str)
{

while(*str)

{ lputc(*str);
str++;

}

}
/* */

//Delay Program
//Input - delay value in milli seconds
void delay(unsigned int k)

{

unsigned int i,j;
for (j=0; j<k; j++)

for(i = 0; i<=800; i++);

}
/* */

6

Pin Diagram of LCD :

Pin Configuration of LCD :

Result :

Thus the Program to display the message on LCD interfacing with LPC 2148 was written and

verified Successfully using Keil C.

8

9

TEMPERATURE SENSOR INTERFACING USING LPC 2148

Ex.No :

Date :

Aim :

To write a program in Keil – C to measure the temperature using LPC 2148 Controller.

Components Required :

 LPC 2148 Kit with LCD interfacing

 Personal Computer

 Keil μ-Vision – 4 Software

Theory :

Temperature Sensor

The LM35 series are precision integrated-circuit temperature sensors, whose output

voltage is linearly proportional to the Celsius (Centigrade) temperature. The output of sensor

converted to digital that easy connecting with microcontroller.

Interfacing LM35 with LPC2148

Read the temperature in LPC2148 Tyro Board from temperature sensor LM35. The

ARM7 LPC2148 Tyro board uses the ADC pin for reading temperature from temperature sensor

LM35. The reading output is displayed into PC through UART1.

The 10 bit ADC used for reading the temperature from LM35. Basic clocking for the A/D

converters is provided by the VPB clock. A programmable divider is included in each converter,

to scale this clock to the 4.5 MHz (max) clock needed by the successive approximation process.

A fully accurate conversion requires 11 of these clocks.

Circuit Diagram of LM35 with LPC 2148 :

10

Program :

#include <LPC214X.H>
/*---LCD Signal Declaration---*/

.24
#define LCD_RW 1<<16 //Port0.16
#define LCD_EN 1<<17 //Port0.17

#define LCD_DATA 0xFF<<16 //Port1.16 to 1.23

#define LCD_STS 1<<23 //Port1.23
/*--- ADC Signal Declaration */

#define AD0_3 1<< 28

#define CLK_DIV 1<<8

#define PDN 1<<21

#define SOC 1<<24
#define BURST 1<<16
#define DONE 1<<31

//Function declaration

int main(void);
void lcdini(void);

void lsts(void);

void lcdctl(unsigned char val1);
void lputc(unsigned char lcr);

void put_s(char *str);

void lputval(unsigned int lbuf);
unsigned int adc_read(unsigned char channel);
void adc_init(void);

void delay (unsigned int k);
/*----Main Program ------*/

int main(void)
{

unsigned int tp1;

IODIR0 = LCD_RW | LCD_EN; //configure LCD r/w & EN as o/p

IODIR1 = LCD_RS; //Configure RS o/p

PINSEL0 = 0; //Configure Port0 as General Purpose IO

PINSEL1 = 0 | AD0_3; // Enable AD0.3

IOCLR0=LCD_EN; IOCLR1=LCD_RS; IOSET0=LCD_RW; /* DISABLE LCD TEMPORALY*/
delay(1000); //LCD Power-up Delay

lcdini(); //Initialise LCD
adc_init(); //Initialise on-chip ADC

do

{ /* LCD - Return Home Command */

lsts(); //Check LCD ready?
lcdctl(2); //Send CMD

lsts(); //Check LCD ready?

put_s("Temprature="); //Print Msg in LCD
tp1 = adc_read(3); // Channel AD0 0.3

lputval(tp1);

lputc('C');

}while(1);

11

}
/* */

void lcdini()
{

lcdctl(0x38); /* Function Set 2 LINE 5 X 8 CHAR*/

delay(5); /* Waits for 5 Msec. */

lcdctl(0x38); /* Sends Function Set - AGAIN */
delay(5); /* Waits for 5 Msec. */

lcdctl(0x38); /* Sends Function Set - AGAIN */

lsts(); /* Wait Till BUSY=0 */
lcdctl(0x38); /* Sends Function Set - AGAIN*/

lsts(); /* Wait Till BUSY=0 */

lcdctl(0x04); /* Display off */

lsts(); /* Wait Till BUSY=0 */
lcdctl(0x01); /* Clear Display */

lsts(); /* Wait Till BUSY=0 */

lcdctl(0x06); /* Set Entry mode */
lsts(); /* Wait Till BUSY=0 */

lcdctl(0x0c); /* Set Display ON */

}
/******* Checks the LCD Status for busy***************/

void lsts()

{
unsigned long int tp1;

IOCLR1=LCD_RS; IOSET0=LCD_RW;

do{

IOSET0=LCD_EN;
tp1 = IOPIN1 & LCD_STS;

IOCLR0=LCD_EN;
}while(tp1);

IOCLR0=LCD_EN;

IOCLR0=LCD_RW;

}

void lcdctl(unsigned char val1)
{ unsigned long int dat;

dat = ((unsigned long int)val1) << 16;
IODIR1 = LCD_RS | LCD_DATA; //Configure RS & DATA as o/p
/* WRITE COMMAND TO CONTROL REGISTER*/

IOCLR1 = LCD_RS;

IOCLR0 = LCD_RW;
IOCLR1 = LCD_DATA;

IOSET1 = dat;

IOSET0=LCD_EN;
IOCLR0=LCD_EN;

IOSET0=LCD_RW;

IODIR1 = LCD_RS; //Configure RS as o/p & DATA as i/p
}
/******* Displays a Character in the LCD ******/

void lputc(unsigned char lcr)

{ unsigned long int dat;

12

lsts();

dat = ((unsigned long int)lcr)<<16;
IODIR1 = LCD_RS | LCD_DATA; //Configure RS & DATA as o/p
IOSET1=LCD_RS; IOCLR0=LCD_RW;

IOCLR1 = LCD_DATA;

IOSET1 = dat;
IOSET0=LCD_EN;

IOCLR0=LCD_EN;

IOSET0=LCD_RW;

IODIR1 = LCD_RS; //Configure RS as o/p & DATA as i/p

}
/* */
void put_s(char *str)

{

while(*str)
{ lputc(*str);

str++;

}
}
/* */

void adc_init()

{
unsigned long int ADC_CH;

ADC_CH = 0 | 1 << 3; //Channel AD0.3

AD0CR = SOC | PDN | CLK_DIV | ADC_CH | BURST;
}
/* */

unsigned int adc_read(unsigned char channel)

{

unsigned int aval;
unsigned long int val;

if (channel == 1) val = AD0DR1;
else if (channel == 2) val = AD0DR2;

else if (channel == 3) val = AD0DR3;

val = val >> 6;

val = val & 0x3FF;

aval = val;
aval = ((aval*100)/465);

return (aval);

}
/* */

void lputval(unsigned int lbuf)

{ unsigned int val;
unsigned char tp1;

val=lbuf;

//Tens
tp1 = (val/10) + '0';

lputc(tp1);

//One

tp1 = (val%10) + '0';

13

lputc(tp1);

}
//Delay Program //Input - delay value in milli seconds

void delay(unsigned int k)

{
unsigned int i,j;

for (j=0; j<k; j++)

for(i = 0; i<=800; i++);

}

/* */

Algorithm :

 Open Keil μ-Vision 4

 Create a Project and Choose the Hardware tool

 Create a file , type the Program and Save it as .c format

 Add the files to Source Group

 Run the program and get the error free output.

 Connect hardware to the PC and Download the Program using Flash Magic

 Verify the output.

Result :

Thus the Program to measure the temperature using LPC 2148 was written and verified Successfully using

Keil C.

14

STEPPER MOTOR INTERFACING USING LPC 2148

Ex.No :

Date :

Aim :

To write a program in Keil – C to rotate the Stepper motor in both Clock wise and Anti –

Clockwise direction using LPC 2148 Controller.

Components Required :

 LPC 2148 Kit with LCD interfacing

 Personal Computer

 Keil μ-Vision – 4 Software

Theory :

Stepper Motor

A stepper motor is a brushless, synchronous electric motor that converts digital pulses into

mechanical shaft rotation. Every revolution of the stepper motor is divided into a discrete number of steps,

and the motor must be sent a separate pulse for each step.

Interfacing Stepper Motor with LPC2148

Controlling a stepper motor using LPC2148 Primer Board. It works by turning ON & OFF a four

I/O port lines generating at a particular frequency. The ARM7 LPC2148 Primer board has four numbers of

I/O port lines, connected with I/O Port lines (P1.16 – P1.19) to rotate the stepper motor. ULN2803 is used

as a driver for port I/O lines, drivers output connected to stepper motor, connector provided for external

power supply if needed.

Circuit Diagram to Interface Stepper Motor with LPC2148 :

15

Program :

#define STEP_DELAY 50 //Step dealy in msec.

#include "lpc214x.h"

//PLL Register Values
#define MSEL 4 //M-1 since M=5

#define PSEL 1<<5 //P-1 since P=2

//IO Ports
#define DIR 1<<16
#define STEP 0xF<<8

unsigned long int step_table[]={ 0x5, 0x9, 0xA,0x6};

void delayms(int n)

{
int i,j;

for(i=0;i<n;i++)

{for(j=0;j<5035;j++) //5035 for 60Mhz ** 1007 for 12Mhz

{;}

}
}
/* Function Sets PLL0 So CPU Clock=60Mhz PCLK=15Mhz */

void clock_select(void)
{

//Fosc = 12Mhz //Select CCLK = 60Mhz & Fcco = 240Mhz

PLL0CFG = PSEL | MSEL;

//PLL FEED

PLL0FEED=0xAA;
PLL0FEED=0x55;

PLL0CON = 3; //Enable PLL0
//PLL FEED

PLL0FEED=0xAA;

PLL0FEED=0x55;

VPBDIV = 0; //PCLK = CCLK/4 So PCLK = 15Mhz

}
/* */
int main(void)

{

unsigned char tptr;
clock_select(); //Config. PLL0 & Set CPU clock 60Mhz
PINSEL0 = 0; // Configure Port0 as General Purpose IO -- P0.0 to P0.15

PINSEL1 = 0; // Configure Port0 as General Purpose IO -- P0.16 to P0.31

IODIR0 = STEP; //Set Stepper motor control Signal as output
tptr = 0; //Initialize pointer

do{

IOCLR0 = STEP; //Set P0.11-P0.8 to '0'

if(IOPIN0 & DIR) IOSET0 = step_table[tptr++] << 8 ;
else IOSET0 = step_table[tptr--] << 8 ;

tptr = tptr & 3; //Set pointer limit 0 to 3

delayms(STEP_DELAY);
}while(1);

}
/* */

16

Algorithm :

 Open Keil μ-Vision 4

 Create a Project and Choose the Hardware tool

 Create a file , type the Program and Save it as .c format

 Add the files to Source Group

 Run the program and get the error free output.

 Connect hardware to the PC and Download the Program using Flash Magic

 Verify the output.

Result :

Thus the Program to rotate Stepper motor in both Clockwise and anti- Clockwise rotation using

LPC 2148 was written and verified Successfully using Keil C.

17

ADC INTERFACING USING LPC 2148

Ex.No :

Date :

Aim :

To write a program in Keil – C to interface ADC with LPC 2148 Controller.

Components Required :

 LPC 2148 Kit with LCD interfacing

 Personal Computer

 Keil μ-Vision – 4 Software

Theory:

The reality is that a great many of the devices that you will want to interact with aren't

going to be digital, or consist of only two possible 'states' (On/Off, True/False, etc.). Almost every

dial or knob on any modern electronics device, for example, is probably analog. Since our

microcontrollers are digital, what that means is that we need to find a way to convert those

analog signals into something 'digital' that our microcontroller can actually understand. That's

where Analog to Digital Converters (ADCs) comes in, and thankfully for us the LPC2148 has

two of them built in.

ADCs essentially act as a bridge (or a 'translator') between the messy outside analog world

and the cozy, black and white (green and white?) digital world our microcontrollers live in.

They work by converting voltage to a numeric value that the microcontroller can understand. For

example, with an internal voltage of 3.3V (which is the Vref on the LPC2148) and your ADC set

to return the maximum 10-bit data (meaning you have possible values between 0 and 1023), 0.0V

would return 0, 3.3V (or higher) would return 1023, and 1.65V would return ~512. They only

work in one direction (reading data from outside and sending it 'into' the chip), but life without

them would be a lot more challenging ... or at the very least a lot more expensive (analog devices

are often much cheaper than their digital counterparts).

Basic clocking for the A/D converters is provided by the APB clock. A programmable

divider is included in each converter, to scale this clock to the 4.5 MHz (max) clock needed by

the successive approximation process. A fully accurate conversion requires 11 of these clocks.

18

Program :

#include <LPC214X.H>

/*---LCD Signal Declaration---*/

#define LCD_RS 1<<24 //Port1.24
#define LCD_RW 1<<16 //Port0.16

#define LCD_EN 1<<17 //Port0.17

#define LCD_DATA 0xFF<<16 //Port1.16 to 1.23
#define LCD_STS 1<<23 //Port1.23

/*--- ADC Signal Declaration */

#define AD0_1 1<< 24

#define CLK_DIV 1<<8

#define PDN 1<<21

#define SOC 1<<24
#define BURST 1<<16

#define DONE 1<<31
//Function declaration

int main(void);

void lcdini(void);

void lsts(void);
void lcdctl(unsigned char val1);

void lputc(unsigned char lcr);

void lputval(unsigned int lbuf);
unsigned int adc_read(unsigned char channel);

void adc_init(void);

void delay (unsigned int k);
/*----Main Program ------*/

int main(void)
{

unsigned int tp1;
IODIR0 = LCD_RW | LCD_EN; //configure LCD r/w & EN as o/p

IODIR1 = LCD_RS; //Configure RS o/p

PINSEL0 = 0; //Configure Port0 as General Purpose IO
PINSEL1 = 0 | AD0_1; // Enable AD0.1

IOCLR0=LCD_EN; IOCLR1=LCD_RS; IOSET0=LCD_RW; /* DISABLE LCD TEMPORALY*/
delay(1000); //LCD Power-up Delay

lcdini(); //Initialise LCD

adc_init(); //Initialise on-chip ADC

do
{ tp1 = adc_read(1); // Channel AD0 0.1

lputval(tp1);
delay(500);

lcdctl(0x01); // Clear Display

lsts();

}while(1);
return 0;

}
/* */

void lcdini()

{
lcdctl(0x38); /* Function Set 2 LINE 5 X 8 CHAR*/

19

delay(5); /* Waits for 5 Msec. */

lcdctl(0x38); /* Sends Function Set - AGAIN */

delay(5); /* Waits for 5 Msec. */

lcdctl(0x38); /* Sends Function Set - AGAIN */
lsts(); /* Wait Till BUSY=0 */

lcdctl(0x38); /* Sends Function Set - AGAIN*/

lsts(); /* Wait Till BUSY=0 */
lcdctl(0x04); /* Display off */

lsts(); /* Wait Till BUSY=0 */

lcdctl(0x01); /* Clear Display */
lsts(); /* Wait Till BUSY=0 */

lcdctl(0x06); /* Set Entry mode */

lsts(); /* Wait Till BUSY=0 */

lcdctl(0x0c); /* Set Display ON */

}
/******* Checks the LCD Status for busy***************/

void lsts()

{

unsigned long int tp1;
IOCLR1=LCD_RS; IOSET0=LCD_RW;

do{

IOSET0=LCD_EN;
tp1 = IOPIN1 & LCD_STS;

IOCLR0=LCD_EN;

}while(tp1);

IOCLR0=LCD_EN;

IOCLR0=LCD_RW;

}

void lcdctl(unsigned char val1)

{ unsigned long int dat;
dat = ((unsigned long int)val1) << 16;

IODIR1 = LCD_RS | LCD_DATA; //Configure RS & DATA as o/p
/* WRITE COMMAND TO CONTROL REGISTER*/

IOCLR1 = LCD_RS;

IOCLR0 = LCD_RW;

IOCLR1 = LCD_DATA;
IOSET1 = dat;

IOSET0=LCD_EN;

IOCLR0=LCD_EN;
IOSET0=LCD_RW;

IODIR1 = LCD_RS; //Configure RS as o/p & DATA as i/p

}
/******* Displays a Character in the LCD ******/
void lputc(unsigned char lcr)

{ unsigned long int dat;

lsts();

dat = ((unsigned long int)lcr)<<16;
IODIR1 = LCD_RS | LCD_DATA; //Configure RS & DATA as o/p

IOSET1=LCD_RS; IOCLR0=LCD_RW;

IOCLR1 = LCD_DATA;

20

IOSET1 = dat;

IOSET0=LCD_EN;

IOCLR0=LCD_EN;

IOSET0=LCD_RW;

IODIR1 = LCD_RS; //Configure RS as o/p & DATA as i/p

}
/* */

void adc_init()

{

unsigned long int ADC_CH;

ADC_CH = 0 | 1 << 1; //Channel AD0.1

AD0CR = SOC | PDN | CLK_DIV | ADC_CH | BURST ;
}

unsigned int adc_read(unsigned char channel)
{

unsigned int aval;

unsigned long int val;

if (channel == 1) val = AD0DR1;
else if (channel == 2) val = AD0DR2;

else if (channel == 3) val = AD0DR3;

val = val >> 6;

val = val & 0x3FF;
aval = val;

return (aval);

}
/* */

void lputval(unsigned int lbuf)

{ unsigned int val;
unsigned char tp1;

val=lbuf;
//Seprate thousands

tp1 = (val/1000) + '0';

lputc(tp1);

val = val%1000;

//Hundreds
tp1 = (val/100) + '0';
lputc(tp1);

val=val%100;

//Tens
tp1 = (val/10) + '0';

lputc(tp1);

//One

tp1 = (val%10) + '0';
lputc(tp1);

}

//Delay Program

21

//Input - delay value in milli seconds

void delay(unsigned int k)

{

unsigned int i,j;
for (j=0; j<k; j++)

for(i = 0; i<=800; i++);
}

Algorithm :

 Open Keil μ-Vision 4

 Create a Project and Choose the Hardware tool

 Create a file , type the Program and Save it as .c format

 Add the files to Source Group

 Run the program and get the error free output.

 Connect hardware to the PC and Download the Program using Flash Magic

 Verify the output.

Result :

Thus the Program to interface ADC with LPC 2148 was written and verified Successfully using

Keil C.

22

DAC INTERFACING USING LPC 2148 – SINE WAVEFORM GENERATION

Ex.No :

Date :

Aim :

To write a program in Keil – C to generate Sine Waveform using DAC interfacing with LPC 2148

Controller.

Components Required :

 LPC 2148 Kit with LCD interfacing

 Personal Computer

 Keil μ-Vision – 4 Software

Theory :

Digital to Analog Converter : The function of DAC is to convert digital values or

binary patterns to analog signals usually. The DAC performs exactly reverse of ADC. LPC2148

has one Digital to Analog Converter which receives digital value from register and give output

to AOUT analog output pin.

Features of LPC2148 DAC

 10 bit digital to analog converter

 Resistor string architecture

 Buffered output

 Power-down mode

 Selectable speed vs. power

Program : Generate Sine Waveform using DAC

#include <lpc214x.h>

#include <math.h>

//PLL Register Values
#define MSEL 4 //M-1 since M=5

#define PSEL 1<<5 //P-1 since P=2
#define AOUT 1<<19 // PINSEL1 value for AOUT config.

#define PI2 6.28 //2Pi = 3.14*2

#define STEPS 500 // No. of Steps per Cycle.
/* Function Sets PLL0 So CPU Clock=60Mhz PCLK=15Mhz */

void clock_select(void)

{
//Fosc = 12Mhz
//Select CCLK = 60Mhz & Fcco = 240Mhz
PLL0CFG = PSEL | MSEL;

//PLL FEED

PLL0FEED=0xAA;

PLL0FEED=0x55;

PLL0CON = 3; //Enable PLL0
//PLL FEED

23

PLL0FEED=0xAA;

PLL0FEED=0x55;

VPBDIV = 0; //PCLK = CCLK/4 So PCLK = 15Mhz

}
/* */
int main(void)

{
unsigned short val, dval; //16bit variable
float sa; //sine angle varies from 0 - 2pi

clock_select(); //CPU Clock Configuration

PINSEL0 = 0; //Configure Port0.0 to P0.15 as General Purose IO
PINSEL1 = AOUT; //Configure Port0.25 as Analog Output PIN

while(1)

{

for(val=0; val<STEPS; val++)

{
//Convert Steps as angle from 0-2pi

sa = (val*PI2)/STEPS;

//Find Sine Value of current angle
sa = sin (sa);

//Convert current value to DAC value 0-1022
//Negative plots shifted above 0 hence mid point fixed at counts 511

sa = (sa*511.0) + 511.0; //Mid point of 511

dval = sa;
DACR = dval<<6; //Send value to DAC

}

}
}

/* */

Algorithm :

 Open Keil μ-Vision 4 and Create a Project and Choose the Hardware tool

 Create a file , type the Program and Save it as .c format

 Add the files to Source Group

 Run the program and get the error free output.

 Connect hardware to the PC and Download the Program using Flash Magic

 Verify the output.

Result :

Thus the Program to generate Sine Waveform using DAC interfacing with LPC 2148 was written

and verified Successfully using Keil C.

24

DAC INTERFACING USING LPC 2148 – SQUARE WAVEFORM GENERATION

Ex.No :

Date :

Aim :

To write a program in Keil – C to generate Square Waveform using DAC interfacing with LPC

2148 Controller.

Components Required :

 LPC 2148 Kit with LCD interfacing

 Personal Computer

 Keil μ-Vision – 4 Software

Theory :

Digital to Analog Converter : The function of DAC is to convert digital values or

binary patterns to analog signals usually. The DAC performs exactly reverse of ADC.

LPC2148 has one Digital to Analog Converter which receives digital value from register and

give output to AOUT analog output pin.

Features of LPC2148 DAC

 10 bit digital to analog converter

 Resistor string architecture

 Buffered output

 Power-down mode

 Selectable speed vs. power

Program : Generate Square Waveform using DAC

#include "lpc214x.h"
//PLL Register Values
#define MSEL 4 //M-1 since M=5

#define PSEL 1<<5 //P-1 since P=2
#define AOUT 1<<19 // PINSEL1 value for AOUT config.

void delayms(int n)

{
int i,j;

for(i=0;i<n;i++)

{for(j=0;j<5035;j++) //5035 for 60Mhz ** 1007 for 12Mhz

{;}

}

}
/* Function Sets PLL0 So CPU Clock=60Mhz PCLK=15Mhz */
void clock_select(void)

25

{

//Fosc = 12Mhz
//Select CCLK = 60Mhz & Fcco = 240Mhz

PLL0CFG = PSEL | MSEL;

//PLL FEED
PLL0FEED=0xAA;

PLL0FEED=0x55;

PLL0CON = 3; //Enable PLL0
//PLL FEED

PLL0FEED=0xAA;
PLL0FEED=0x55;

VPBDIV = 0; //PCLK = CCLK/4 So PCLK = 15Mhz

}
/* */

int main(void)

{

clock_select(); //CPU Clock Configuration

PINSEL0 = 0; //Configure Port0.0 to P0.15 as General Purose IO

PINSEL1 = AOUT; //Configure Port0.25 as Analog Output PIN

while(1)
{

DACR = 0; //DAC ouput = 0V
delayms(1); //1 msec Delay

DACR = 0x3FF << 6; //DAC ouput = 2.2V

delayms(1); //1 mSec Delay
}

}

/* */

Algorithm :

 Open Keil μ-Vision 4 and Create a Project and Choose the Hardware tool

 Create a file , type the Program and Save it as .c format

 Add the files to Source Group

 Run the program and get the error free output.

 Connect hardware to the PC and Download the Program using Flash Magic

 Verify the output.

Result :

Thus the Program to generate Square Waveform using DAC interfacing with LPC 2148 was written

and verified Successfully using Keil C.

26

PULSE WIDTH MODULAION USING LPC 2148

Ex.No :

Date :

Aim :

To write a program in Keil – C to generate Pulse Width Modulation Waveform using LPC 2148

Controller.

Components Required :

 LPC 2148 Kit with LCD interfacing

 Personal Computer

 Keil μ-Vision – 4 Software

Theory:

The PWM is based on the standard Timer block and inherits all of its features, although

only the PWM function is pinned out on the LPC17xx. The Timer is designed to count cycles

of the peripheral clock (PCLK) and optionally generate interrupts or perform other actions when

specified timer values occur, based on seven match registers. The PWM function is in addition

to these features, and is based on match register events.

The ability to separately control rising and falling edge locations allows the PWM to be

used for more applications. For instance, multi-phase motor control typically requires three non-

overlapping PWM outputs with individual control of all three pulse widths and positions.

Two match registers can be used to provide a single edge controlled PWM output. One

match register (PWMMR0) controls the PWM cycle rate, by resetting the count upon match. The

other match register controls the PWM edge position. Additional single edge controlled PWM

outputs require only one match register each, since the repetition rate is the same for all PWM

outputs. Multiple single edge controlled PWM outputs will all have a rising edge at the beginning

of each PWM cycle, when an PWMMR0 match occurs.

Three match registers can be used to provide a PWM output with both edges controlled.

Again, the PWMMR0 match register controls the PWM cycle rate. The other match registers

control the two PWM edge positions. Additional double edge controlled PWM outputs require

only two match registers each, since the repetition rate is the same for all PWM outputs. With

double edge controlled PWM outputs, specific match registers control the rising and falling edge

of the output. This allows both positive going PWM pulses (when the rising edge occurs prior to

the falling edge), and negative going PWM pulses (when the falling edge occurs prior to the

rising edge)

27

Program :

#include "lpc214x.h"
//PWM ON Duration -- Change this to modify duty cycle.

#define TON 100 //Value between 0 - 900 --- 500 = 50%
#define PWM4 1<<17 //PWM4 Pin Enable bit

#define PWMMR0R 1<<1 //PWM MR0 Reset bit

#define PWMENA4 1<<12 //PWM4 Enable bit
#define EPWMM0L 1<<0 //PWM MR0 Latch Eanble bit

#define EPWMM4L 1<<4 //PWM MR4 Latch Enable bit

void clock_select(void)

{

//Fosc = 12Mhz
PLL0CON = 0; //Disbale PLL0 So Fosc = CCLK

PLL0FEED=0xAA;

PLL0FEED=0x55;

VPBDIV = 0; //PCLK = CCLK/4 So PCLK = 3Mhz
}
/* */

int main(void)

{

IODIR0 = 0xFFFFFFFF; //Configure Port0 as output Port
//Configure CPU pin P0.8 as PWM4
PINSEL0 = PWM4;

clock_select(); //PLL settings and PCLK settings
//Reset on PWMMR0: the PWMTC will be reset if PWMMR0 matches it.
PWMMCR = PWMMR0R;

//Selects single edge controlled mode for PWM4.

//Enable PWM4 output

PWMPCR = 0 | PWMENA4;

//Configure PWM prescaler for divide value of 3
//So output of Prescaler = PCLK / 3 = 1Mhz

PWMPR = 2; //Divide value = 3 So count=2

//Timer Clock input = 1Mhz = 1000Khz
//Select PWM Freq. as 1Khz So the Count for One Cycle = 1000

PWMMR0 = 1000; //PWM Rate 'T' Freq. 1Khz

//Ton Duration -- Change this to modify power

PWMMR4 = TON; //Ton

//PWM Latch Enable Register
//Enable MR0 & MR4 Latch bits

PWMLER = EPWMM0L | EPWMM4L ;
PWMTCR = 9; //Make high PWM Enable and Counter Enable

//Start of PWM output
while(1); //waits here --- End of Program

}

28

Algorithm :

 Open Keil μ-Vision 4

 Create a Project and Choose the Hardware tool

 Create a file , type the Program and Save it as .c format

 Add the files to Source Group

 Run the program and get the error free output.

 Connect hardware to the PC and Download the Program using Flash Magic

 Verify the output.

Result :

Thus the Program to generate PWM waveform using LPC 2148 was written and verified

Successfully.

29

GENERATION OF INTERRUPT IN LPC 2148

Ex.No :

Date :

Aim :

To write a program in Keil – C to generate interrupt in LPC 2148 Controller.

Components Required :

 LPC 2148 Kit with LCD interfacing

 Personal Computer

 Keil μ-Vision – 4 Software

Theory :

External Interrupts

An interrupt caused by an external source such as the computer operator, external sensor

or monitoring device, or another computer. Interrupts are special events that require immediate

attention.

Interfacing External Interrupts with LPC2148

When an external interrupt signal is occured in LPC2148 Primer Board,the message

"LOW" will be displayed on PC. The Interrupt signal is occurred by using switches. When the

switch is pressed to LOW, then the external interrupt is occurred.

The Vectored Interrupt Controller (VIC) takes 32 interrupt request inputs and

programmable assigns them into 3 categories, FIQ, vectored IRQ, and non-vectored IRQ. The

ARM7 LPC2148 Primer board has two numbers of External Interrupts, connected with I/O Port

lines (P0.14 & P0.15) as switches.

Circuit Diagram to Interface Ext-Interrupt with LPC2148

30

Program :

#include <lpc214x.h>

#define EINT2 3<<14 //Configure P0.7 as EINT2 input => PINSEL0

#define LEDS 0xFF<<8 //LED => P0.8 to P0.15

void eint2_isr(void) attribute ((interrupt("IRQ")));

unsigned long count;

void delay(int n)

{
int i,j;

for(i=0;i<n;i++)

{for(j=0;j<1007;j++) //5035 for 60Mhz ** 1007 for 12Mhz

{;}

}
}
/* */
void eint2_isr(void)

{

EXTINT = 1<<2; //External Interrupt Flag register

count++;

if(count>255) count=0;
VICVectAddr=0xFF;

}

/* */
int main(void)

{

IODIR0 = LEDS; //Configure Port0 as output Port

PINSEL0 = EINT2; //Configure Port0.7 as EINT2 Input

PINSEL1 = 0;

VICIntEnable = 1 << 16; //Enable EINT2 interrupt
VICIntSelect = 0; //Interrupt request assigned to the IRQ category
EXTMODE = 1<<2;

EXTPOLAR = 0;

VICVectAddr0 = (unsigned long) eint2_isr;

VICVectCntl0 =0x20 | 16;

count=0;

while(1){

IOSET0 = LEDS; //Switch OFF all LEDS
IOCLR0 = count << 8; //Set VAlue
delay(1000);

}

}
/* */

31

Algorithm :

 Open Keil μ-Vision 4

 Create a Project and Choose the Hardware tool

 Create a file , type the Program and Save it as .c format

 Add the files to Source Group

 Run the program and get the error free output.

 Connect hardware to the PC and Download the Program using Flash Magic

 Verify the output.

Result :

Thus the Program to generate Interrupt in LPC 2148 was written and verified Successfully using

Keil C.

32

33

EEPROM INTERFACING USING LPC 2148

Ex.No :

Date :

Aim :

To write a program in Keil – C to interface EEPROM with LPC 2148 Controller.

Components Required :

 LPC 2148 Kit with LCD interfacing

 Personal Computer

 Keil μ-Vision – 4 Software

Theory :

The EEPROM is used to store the information from the registers. It has no direct connection

to the other parts of the device besides the registers. The intention of the EEPROM is to store

device settings so they get not lost when the device is powered down. The information stored

in the EEPROM is loaded back into the registers on power up. This organization of the memory

enables the device to configure itself in a application where no I2C bus is present. It also enables

a quick loading of a standard configuration at power up. The amount of write and read cycles

to the EEPROM is typically greater then 1000. An internal low frequency clock generator is used

to transfer data to the EERPOM. This ensures that the EEPROM can be accessed also if no

clock reference (crystal or LVCMOS input) is active.

Circuit Diagram to Interface I2C–EEPROM with LPC2148 :

34

Program :

#include <LPC214X.H>
/*---- I2C0 Signals --------------- */

#define SDA0 1<<6
#define SCL0 1<<4

/* --- I2C0 Signal Declaration */

#define I2EN 1<<6
#define STA 1<<5

#define STO 1<<4

#define SI 1<<3
#define AA 1<<2
//Function declaration

int main(void);

void i2c_init();
void i2c_word_write(unsigned char slave_addr, unsigned char word_addr, unsigned char data);

unsigned char i2c_word_read(unsigned char slave_addr, unsigned char word_addr);

void i2c_write(unsigned char addr, unsigned char dat);
void disp_value(unsigned char value);

void delay(unsigned int k);

//Seven Segment Code
unsigned char seg_dat[]={0xC0, 0xF9, 0xA4, 0xB0, 0x99, 0x92, 0x82, 0xF8, 0x80, 0x98};

int main()

{

unsigned char count;
//Initialize I2C

i2c_init();
//Load Count value from EEPROM

count = i2c_word_read(0xA0, 0);

//Limit the value
if(count>9) count=0;

while(1)
{ disp_value(count); //Display Count

i2c_word_write(0xA0, 0 , count); //Store count

delay(2000); //2 Sec Delay

count++; //increment count
//Limit the value

if(count>9) count=0;

}

return 0;
}
/* */

void i2c_init()

{
//Enable SDA0 & SCL0 Pins

PINSEL0 = 0 | SDA0 | SCL0;

//Set I2C0 Clock rate to 100Khz

I2C0SCLH = 200; I2C0SCLL = 200;
//Enable I2C

I2C0CONSET = I2EN;

}

35

/* */
void i2c_word_write(unsigned char slave_addr,

unsigned char word_addr,

unsigned char data)

{

unsigned char sts;

//Transmit Start Condition

I2C0CONSET = STA;

//Wait for tansmit to complete
do{

sts = I2C0CONSET & SI;
}while(sts!=SI);

I2C0CONCLR = STA; //Clear STA

//Transmit Slave Address
I2C0DAT = slave_addr; //Slave Addr.+W
I2C0CONSET = AA; //Ack bit

I2C0CONCLR = SI; //Clear SI flag

//Wait for tansmit to complete

do{

sts = I2C0CONSET & SI;

}while(sts!=SI);
//Transmit Slave Word Address
I2C0DAT = word_addr; //Slave Word address

I2C0CONSET = AA; //Ack bit
I2C0CONCLR = SI; //Clear SI flag

//Wait for tansmit to complete

do{

sts = I2C0CONSET & SI;

}while(sts!=SI);

// --------- Write Data
I2C0DAT = data; //data

I2C0CONSET = AA; //Ack bit

I2C0CONCLR = SI; //Clear SI flag
//Wait for tansmit to complete

do{

sts = I2C0CONSET & SI;
}while(sts!=SI);

// --------- End of write
//Stop Bit
I2C0CONSET = STO | AA; //Stop & Ack bit

I2C0CONCLR = SI; //Clear SI flag

delay(15);

I2C0CONCLR = SI; //Clear SI flag

}
/* */

unsigned char i2c_word_read(unsigned char slave_addr, unsigned char word_addr)
{

unsigned char sts;
unsigned char data;

36

//Transmit Start Condition

I2C0CONSET = STA;
//Wait for tansmit to complete

do{

sts = I2C0CONSET & SI;
}while(sts!=SI);

I2C0CONCLR = STA; //Clear STA

//Transmit Slave Address
I2C0DAT = slave_addr; //Slave Addr.+W

I2C0CONSET = AA; //Ack bit

I2C0CONCLR = SI; //Clear SI flag
//Wait for tansmit to complete

do{

sts = I2C0CONSET & SI;

}while(sts!=SI);

//Transmit Slave Word Address
I2C0DAT = word_addr; //Slave Word address
I2C0CONSET = AA; //Ack bit

I2C0CONCLR = SI; //Clear SI flag

//Wait for tansmit to complete

do{

sts = I2C0CONSET & SI;
}while(sts!=SI);

//Stop Bit
I2C0CONSET = STO | AA; //Stop & Ack bit

I2C0CONCLR = SI; //Clear SI flag

delay(2);

I2C0CONCLR = SI; //Clear SI flag
/* */
//Repeat Start Condition

I2C0CONSET = STA;

//Wait for tansmit to complete
do{

sts = I2C0CONSET & SI;
}while(sts!=SI);

I2C0CONCLR = STA; //Clear STA

//Transmit Slave Address (Read)
I2C0DAT = slave_addr | 1; //Slave Addr.+R

I2C0CONSET = AA; //Ack bit

I2C0CONCLR = SI; //Clear SI flag

//Wait for tansmit to complete
do{

sts = I2C0CONSET & SI;

}while(sts!=SI);

/*------Data Read ------ */
I2C0CONSET = AA; //Ack bit

I2C0CONCLR = SI; //Clear SI flag

//Wait for rx to complete

37

do{

sts = I2C0CONSET & SI;
}while(sts!=SI);

data = I2C0DAT; //read data
/** Send Data with NOT ACK **/

I2C0CONCLR = SI | AA; //Clear SI flag
//Wait for rx to complete

do{

sts = I2C0CONSET & SI;

}while(sts!=SI);

//Stop Bit
I2C0CONSET = STO | AA; //Stop & Ack bit

I2C0CONCLR = SI; //Clear SI flag

delay(2);

I2C0CONCLR = SI; //Clear SI flag

return(data);

}

/* */
void i2c_write(unsigned char addr, unsigned char dat)

{

unsigned char sts;
//Transmit Start Condition

I2C0CONSET = STA;

//Wait for tansmit to complete

do{
sts = I2C0CONSET & SI;

}while(sts!=SI);
I2C0CONCLR = STA; //Clear STA

//Transmit Slave Address
I2C0DAT = addr; //Slave Addr.+W
I2C0CONSET = AA; //Ack bit

I2C0CONCLR = SI; //Clear SI flag

//Wait for tansmit to complete

do{

sts = I2C0CONSET & SI;

}while(sts!=SI);
//Transmit data
I2C0DAT = dat; //data

I2C0CONSET = AA; //Ack bit

I2C0CONCLR = SI; //Clear SI flag
//Wait for tansmit to complete

do{

sts = I2C0CONSET & SI;

}while(sts!=SI);

//Stop Bit
I2C0CONSET = STO | AA; //Stop & Ack bit
I2C0CONCLR = SI; //Clear SI flag

delay(2);

I2C0CONCLR = SI; //Clear SI flag
}

/* */

38

void disp_value(unsigned char value)

{

//Convert as 7Seg. code and Display in DS3 & DS4
i2c_write(0x70, seg_dat[value]); //PCF8574A => 0x70, PCF8574P => 0x40

}
/* */

//Delay Program
//Input - delay value in milli seconds

void delay(unsigned int k)
{

unsigned int i,j;

for (j=0; j<k; j++)

for(i = 0; i<=5035; i++);

}
/* */

Algorithm :

 Open Keil μ-Vision 4

 Create a Project and Choose the Hardware tool

 Create a file , type the Program and Save it as .c format

 Add the files to Source Group

 Run the program and get the error free output.

 Connect hardware to the PC and Download the Program using Flash Magic

 Verify the output.

Result :

Thus the Program to interface EEPROM with LPC 2148 was written and verified Successfully

using Keil C.

39

REAL TIME CLOCK INTERFACING USING LPC 2148

Ex.No :

Date :

Aim :

To write a program in Keil – C to display the time on LCD using RTC interfacing with

LPC 2148 Controller.

Components Required :

 LPC 2148 Kit with LCD interfacing

 Personal Computer

 Keil μ-Vision – 4 Software

Theory :

RTC (Real Time Clock)

The DS1307 Serial Real-Time Clock is a low-power; full binary-coded decimal (BCD)

clock/calendar plus 56 bytes of NV SRAM. Address and data are transferred serially via a 2-wire, bi-

directional bus. The clock/calendar provides seconds, minutes, hours, day, date, month, and year

information. The end of the month date is automatically adjusted for months with fewer than 31 days,

including corrections for leap year. The clock operates in either the 24-hour or 12-hour format with AM/PM

indicator.

Interfacing I2C – RTC with LPC2148

Read date & time by using I2C - RTC in LPC2148 Primer Board. Wiring up an I2C based RTC to

the I2C port is relatively simple. The RTC also makes the software easier as it takes care of all calendar

functions; accounting for leap years etc. The DS1307 (RTC) Real Time Clock IC (an I2C real time clock)

is an 8 pin device using an I2C interface.

In LPC2148 Primer Kit, 2 nos. of RTC lines are controlled by I2C Enabled drivers. I2C Lines

serial clock SCL (P0.2), serial data SDA (P0.3) connected to the I2C based serial RTC ds1307 IC. The

date & times are read in LPC2148 Primer Kit by using these SDA & SCL I2C lines.

Circuit Diagram to Interface I2C–RTC with LPC2148

40

Program:

#include <LPC214X.H>

/*---LCD Signal Declaration---*/

#define LCD_RS 1<<24 //Port1.24

#define LCD_RW 1<<16 //Port0.16
#define LCD_EN 1<<17 //Port0.17

#define LCD_DATA 0xFF<<16 //Port1.16 to 1.23

#define LCD_STS 1<<23 //Port1.23

/*--- RTC Signal Declaration */
#define CLKEN 1

#define CLKSRC 1<<4

//Function declaration

int main(void);

void lcdini(void);
void lsts(void);

void lcdctl(unsigned char val1);

void lputc(unsigned char lcr);
void delay (unsigned int k);

void rtc_init(void);

void t_disp(void);
void t_set(unsigned char shrs, unsigned char smin, unsigned char ssec);

/*----Main Program ----- */
int main(void)

{
IODIR0 = LCD_RW | LCD_EN; //configure LCD r/w & EN as o/p
IODIR1 = LCD_RS; //Configure RS o/p

PINSEL0 = 0; //Configure Port0 as General Purpose IO

PINSEL1 = 0;

IOCLR0=LCD_EN; IOCLR1=LCD_RS; IOSET0=LCD_RW; /* DISABLE LCD TEMPORALY*/
delay(1000); //LCD Power-up Delay

lcdini(); //Initialise LCD

rtc_init(); //Initialise RTC
//t_set(11,15, 0); //time Set function

do

{ /* LCD - Return Home Command */
lsts(); //Check LCD ready?

lcdctl(2); //Send CMD

lsts(); //Check LCD ready?

//Display time

t_disp();

}while(1);

}
/* */

void lcdini()

{
lcdctl(0x38); /* Function Set 2 LINE 5 X 8 CHAR*/
delay(5); /* Waits for 5 Msec. */

lcdctl(0x38); /* Sends Function Set - AGAIN */

41

delay(5); /* Waits for 5 Msec. */

lcdctl(0x38); /* Sends Function Set - AGAIN */

lsts(); /* Wait Till BUSY=0 */

lcdctl(0x38); /* Sends Function Set - AGAIN*/
lsts(); /* Wait Till BUSY=0 */

lcdctl(0x04); /* Display off */

lsts(); /* Wait Till BUSY=0 */
lcdctl(0x01); /* Clear Display */

lsts(); /* Wait Till BUSY=0 */

lcdctl(0x06); /* Set Entry mode */
lsts(); /* Wait Till BUSY=0 */

lcdctl(0x0c); /* Set Display ON */

}
/******* Checks the LCD Status for busy***************/

void lsts()

{

unsigned long int tp1;
IOCLR1=LCD_RS; IOSET0=LCD_RW;

do{

IOSET0=LCD_EN;
tp1 = IOPIN1 & LCD_STS;

IOCLR0=LCD_EN;

}while(tp1);
IOCLR0=LCD_EN;

IOCLR0=LCD_RW;

}
/* */
void lcdctl(unsigned char val1)

{ unsigned long int dat;

dat = ((unsigned long int)val1) << 16;

IODIR1 = LCD_RS | LCD_DATA; //Configure RS & DATA as o/p
/* WRITE COMMAND TO CONTROL REGISTER*/

IOCLR1 = LCD_RS;
IOCLR0 = LCD_RW;

IOCLR1 = LCD_DATA;

IOSET1 = dat;
IOSET0=LCD_EN;

IOCLR0=LCD_EN;

IOSET0=LCD_RW;

IODIR1 = LCD_RS; //Configure RS as o/p & DATA as i/p

}
/******* Displays a Character in the LCD ******/
void lputc(unsigned char lcr)

{ unsigned long int dat;

lsts();

dat = ((unsigned long int)lcr)<<16;
IODIR1 = LCD_RS | LCD_DATA; //Configure RS & DATA as o/p

IOSET1=LCD_RS; IOCLR0=LCD_RW;

IOCLR1 = LCD_DATA;
IOSET1 = dat;

42

IOSET0=LCD_EN;

IOCLR0=LCD_EN;

IOSET0=LCD_RW;

IODIR1 = LCD_RS; //Configure RS as o/p & DATA as i/p

}

//Delay Program
void delay(unsigned int k)
{

unsigned int i,j;
for (j=0; j<k; j++)

for(i = 0; i<=800; i++);
}
//RTC Initialization Program

void rtc_init()

{
//Enable Clock and Select Clock Source 32Khz Ext. Crystal

CCR = CLKSRC | CLKEN;

CIIR = 0; //Disble Count interrupt
//Alarm Mask Register

AMR = 0xff; //Disable alarm

}

/* */
void t_disp()

{unsigned char ten, one;

unsigned char tp1;
//Display HRS

tp1 = HOUR & 0x1F;
ten = (tp1/10)+'0';
one = (tp1%10)+'0';

lputc(ten); lputc(one); lputc(':');

//Display Min.
tp1 = MIN & 0x3F;

ten = (tp1/10)+'0';
one = (tp1%10)+'0';

lputc(ten); lputc(one); lputc(':');

//Display Sec.
tp1 = SEC & 0x3F;

ten = (tp1/10)+'0';

one = (tp1%10)+'0';

lputc(ten); lputc(one);

}
/* */

void t_set(unsigned char shrs, unsigned char smin, unsigned char ssec)

{
HOUR = shrs & 0x1F;
MIN = smin & 0x3F;

SEC = ssec & 0x3F;

}
/* */

43

Algorithm :

 Open Keil μ-Vision 4

 Create a Project and Choose the Hardware tool

 Create a file , type the Program and Save it as .c format

 Add the files to Source Group

 Run the program and get the error free output.

 Connect hardware to the PC and Download the Program using Flash Magic

 Verify the output.

Result :

Thus the Program to display the time on LCD using RTC interfacing with LPC 2148 was written

and verified Successfully using Keil C.

44

COMMUNICATION BETWEEN TWO LPC 2148 USING ZIGBEE

Ex.No :

Date :

Aim :

To write a program in Keil – C to Communicate with two LPC 2148 Controller using Zigbee.

Components Required :

 LPC 2148 Kit with LCD interfacing

 Zigbee Transceiver

 Personal Computer

 Keil μ-Vision – 4 Software

Theory :

ZigBee

ZigBee is a specification for a suite of high level communication protocols using small, low- power

digital radios based on an IEEE 802 standard for personal area networks.

Digi ZigBee

The Digi Xbee 802.15.4 modules are the easiest to use, most reliable and cost-effective RF devices

we've experienced. The 802.15.4 Xbee modules provide two friendly modes of communication - a simple

serial method of transmit/receive or a framed mode providing advanced features. These modules can

communicate point to point, from one point to a PC, or in a mesh network.

Interfacing Zigbee with LPC2148

Interfacing ZigBee module with LPC2148 Primer Board for used for controlling application

through UART0. The data communication is done in internet by using the ZigBee module through MAX232

into the SBUF register of LPC2148 microcontroller. The serial data from the Zigbee receiver is taken by

using the Serial Interrupt of the controller. +5V and ground is connected to provide power to the module.

While TX and RX pin is connected for communication.

Circuit Diagram to Interface Zigbee with LPC2148

45

Program : Zigbee – Remote (Transmitter)

#include <lpc214x.h>
//Switch Port

#define KEY (IOPIN0 & 1<<7) //Key at P0.7
unsigned char const seg_dat[]={0x3F, 0x6, 0x5B, 0x4F, 0x66, 0x6D, 0x7D, 0x7, 0x7F, 0x67};
#define DS3 1<<13 // P0.13

#define DS4 1<<12 // P0.12
#define SEG_CODE 0xFF<<16 // Segment Data from P0.16 to P0.23

//PLL Register Values
#define MSEL 4 //M-1 since M=5

#define PSEL 1<<5 //P-1 since P=2

//UART1 Values
//Buad rate Divide value - 9600 BPS

#define MULVAL 10<<4

#define DIVADDVAL 6

#define UDIV 61

#define DLAB 1<<7
#define TXD1 1<<16

#define RXD1 1<<18
char tr_buf[] = { 0x55, 0x55, 0x55, //Sync Pulses

0xAA, 0x55, 0 }; //Start Sequence

/* */

void delay_ms(int n)

{
int i,j;

for(i=0;i<n;i++)

{for(j=0;j<5035;j++) //5035 for 60Mhz ** 1007 for 12Mhz

{;}
}

}
/* Function Sets PLL0 So CPU Clock=60Mhz PCLK=15Mhz
void clock_select(void)

{

//Fosc = 12Mhz
//Select CCLK = 60Mhz & Fcco = 240Mhz
PLL0CFG = PSEL | MSEL;

//PLL FEED

PLL0FEED=0xAA;
PLL0FEED=0x55;

PLL0CON = 3; //Enable PLL0
//PLL FEED

PLL0FEED=0xAA;

PLL0FEED=0x55;

VPBDIV = 0; //PCLK = CCLK/4 So PCLK = 15Mhz

}
/* Function To Configure UART1 to */ /* 1200 Baud Rate No parity Data=8bits */
void UART1_Init(void)

{

//Pin Function Select UART1 RXD/TXD

46

PINSEL0 |= RXD1 | TXD1 ;

U1FCR = 0; // Disable FIFO's
U1LCR = 3 | DLAB; // 8N1, enable Divisor latch bit DLAB=1

// PCLK = 15.000.000 MHz

U1FDR = MULVAL | DIVADDVAL;
U1DLL = UDIV; // baud rate fixed to 9600 @ PCLK = 15 Mhz

U1DLM = 0;

U1LCR = 3; // Disable Divisor latch bit DLAB=0
}

/* */
/* Function to send one Character to UART #1 */
void uart_send(unsigned char tr)

{
//Wait for Previous data Transmit to complete
while(!(U1LSR & 0x20));

U1THR = tr; //Send char to UART1

}
/* */
/* Function Transmits String to UART #1 */

void uart_str(char *text)
{

while(*text)

{
//Wait for Previous data Transmit to complete

while(!(U1LSR & 0x20));

U1THR = *text++; //Send to UART1

}

}
/* */
int main (void)

{ unsigned char count;

//Configure Port 0 & 1 as General Purose IO

PINSEL0 = 0;

PINSEL1 = 0;

PINSEL2 = 0;
//Configure Segement data & Select signal as output
IODIR0 = SEG_CODE | DS3 | DS4;

IODIR1 = 0; //Port 1 as input
IOSET0 = SEG_CODE | DS3 ; //Disable DS3 display

IOCLR0 = DS4; //Enable DS4 Display

clock_select(); //Set CPU Clock

UART1_Init(); //Configure UART #1
delay_ms(1000);

count = 0; //Initial value of count

while (1)

{
//Display Count value

IOCLR0 = SEG_CODE;

IOSET0 = seg_dat[count]<<16;

uart_str(tr_buf); //Transmit Sync pulse & Start Seq.

47

uart_send(count);

while(KEY); //Wait for Key Press

while(!KEY); //Wait for Key Release

count++; //Increment Count Value

if(count>=10) count=0; //Limit to 9

uart_str(tr_buf); //Transmit Sync pulse & Start Seq.
uart_send(count);

}

}
/* */

Program : Base (Receiver)

#include <lpc214x.h>
unsigned char const seg_dat[]={0x3F, 0x6, 0x5B, 0x4F, 0x66, 0x6D, 0x7D, 0x7, 0x7F, 0x67};
#define DS3 1<<13 // P0.13

#define DS4 1<<12 // P0.12
#define SEG_CODE 0xFF<<16 // Segment Data from P0.16 to P0.23

//PLL Register Values
#define MSEL 4 //M-1 since M=5

#define PSEL 1<<5 //P-1 since P=2
//Buad rate Divide value - 9600 BPS

#define MULVAL 10<<4

#define DIVADDVAL 6
#define UDIV 61

#define DLAB 1<<7
#define TXD1 1<<16

#define RXD1 1<<18
unsigned char srdy; //UART #1 Data Index
unsigned char count; //Value Received from Tr

unsigned char frmrdy; //Data Ready Flag

/* */

void delay_ms(int n)

{
int i,j;
for(i=0;i<n;i++)

{for(j=0;j<5035;j++) //5035 for 60Mhz ** 1007 for 12Mhz
{;}

}

}
/* Function Sets PLL0 So CPU Clock=60Mhz PCLK=15Mhz */

void clock_select(void)

{
//Fosc = 12Mhz //Select CCLK = 60Mhz & Fcco = 240Mhz
PLL0CFG = PSEL | MSEL;

//PLL FEED

PLL0FEED=0xAA;

48

PLL0FEED=0x55;

PLL0CON = 3; //Enable PLL0
//PLL FEED

PLL0FEED=0xAA;

PLL0FEED=0x55;

VPBDIV = 0; //PCLK = CCLK/4 So PCLK = 15Mhz

}
// Serial Port Interrupt Service Routine

/* */

 irq void serial_isr(void)
{
unsigned char sdat;

sdat = U1RBR;

switch(srdy)

{

case 0: if(sdat==0xAA) srdy=1; //Check Start Seq. Data #1
break;

case 1: if(sdat==0x55) srdy=2; //Check Start Seq. Data #2
else srdy=0; //Set index = 0

break;

case 2: count = sdat; //Read Count

frmrdy=1; //Set Data Ready Flag

srdy=0; // Set Index = 0 to get next data
break;

default: srdy=0;
break;

}
VICVectAddr=0xFF;

}
/* Function To Configure UART1 to */ /* 1200 Baud Rate No parity Data=8bits */

void UART1_Init(void)

{
//Pin Function Select UART1 RXD/TXD

PINSEL0 |= RXD1 | TXD1 ;

U1FCR = 0; // Disable FIFO's

U1LCR = 3 | DLAB; // 8N1, enable Divisor latch bit DLAB=1

// PCLK = 15.000.000 MHz
U1FDR = MULVAL | DIVADDVAL;
U1DLL = UDIV; // baud rate fixed to 9600 @ PCLK = 15 Mhz

U1DLM = 0;

U1LCR = 3; // Disable Divisor latch bit DLAB=0
/** UART1 Interrupt Configuration **/

U1IER = 1; //Enable the Rxd interrupts.

49

VICIntEnable = 1 << 7; //Enable UART1 interrupt
VICIntSelect = 0; //Interrupt request assigned to the IRQ category

VICVectAddr0 = (unsigned long) serial_isr; //IRQ0 Address
VICVectCntl0 =0x20 | 7; //Assign IRQ0

}

/* */
/* Function to send one Character to UART #1 */

void uart_send (unsigned char tr)

{

//Wait for Previous data Transmit to complete
while(!(U1LSR & 0x20));

U1THR = tr; //Send char to UART1

}
/* */
/* Function Transmits String to UART #1 */

void uart_str(char *text)

{

while(*text)
{
//Wait for Previous data Transmit to complete

while(!(U1LSR & 0x20));

U1THR = *text++; //Send to UART1
}

}
/* */
int main (void)

{

//Configure Port 0 & 1 as General Purose IO
PINSEL0 = 0;

PINSEL1 = 0;
PINSEL2 = 0;

//Configure Segement data & Select signal as output
IODIR0 = SEG_CODE | DS3 | DS4;

IODIR1 = 0; //Port 1 as input

IOSET0 = SEG_CODE | DS3 ; //Disable DS3 display

IOCLR0 = DS4; //Enable DS4 Display

frmrdy=0; srdy=0; //Initial value of index & Flag

clock_select(); //Set CPU Clock

UART1_Init(); //Configure UART #1

delay_ms(1000);

count = 0; //Initial value
//Display Count value
IOCLR0 = SEG_CODE;

IOSET0 = seg_dat[count]<<16;

while (1)

{

50

if(frmrdy==1) //Count value Received
{

frmrdy = 0; //Clear Rx. Flag

//Display Count

value IOCLR0 =

SEG_CODE;

IOSET0 = seg_dat[count]<<16;

}

}
}

/* */

Algorithm :

 Open Keil μ-Vision 4

 Create a Project and Choose the Hardware tool

 Create a file , type the Program and Save it as .c format

 Add the files to Source Group

 Run the program and get the error free output.

 Connect hardware to the PC and Download the Program using Flash Magic

 Verify the output.

Result :

Thus the Program to make Communication between two LPC 2148 Controller using Zigbee

was written and verified Successfully using Keil C.

51

MAILBOX USING KEIL C SOFTWARE

Ex.No:

Date:

Aim:

To develop a ‘C’code to create a mailbox and to understand the RTOS functions

Apparatus & Software Required:

1. LPC2148 Development board.

 2. KeilµVision5software.

3. Flash Magic.

4. USB cable

Theory :

Real-time and embedded systems operate in constrained environments in which

computer memory and processing power are limited. They often need to provide their services

within strict time deadlines to their users and to the surrounding world. It is these memory,

speed and timing constraints that dictate the use of real-time operating systems in embedded

software. The "kernel" of a real-time operating system ("RTOS") provides an "abstraction

layer" that hides from application software the hardware details of the processor (or set of

processors) up on which the application software will run.

In providing this "abstraction layer" the RTOS kernel supplies five main categories of

basic services to application software The most basic category of kernel services is Task

Management. This set of services allows application software developers to design their

software as a number of separate "chunks" of software -- each handling a distinct topic, a

distinct goal, and perhaps its own real-time deadline. Each separate "chunk" of software is

called a "task." The main RTOS service in this category is the scheduling of tasks as the

embedded system is in operation.

The second category of kernel services is Inter task Communication and Synchronization.

These services make it possible for tasks to pass information from one to another, without

danger of that information ever being damaged. They also make it possible for tasks to

coordinate, so that they can productively cooperate with one another. Without the help of these

RTOS services, tasks might well communicate corrupted information or otherwise interfere

with each other.

Since many embedded systems have stringent timing requirements, most RTOS kernels

also provide some basic Timer services, such as task delays and time-outs. Many (but not all)

RTOS kernels provide Dynamic Memory Allocation services. This category of services allows

tasks to "borrow" chunks of RAM memory for temporary use in application software. Often

these chunks of memory are then passed from task to task, as a means of quickly communicating

large amounts of data between tasks. Some very small RTOS kernels that are intended for tightly

memory-limited environments, do not offer Dynamic memory allocation.

52

PROGRAM:
/**/

/* RTOs Mailbox Example */

/**/

#include "LPC214x.H" /* LPC21xx definitions */

#include <ucos.h> /* OS Header File */

#define TASK_STK_SIZE 100 /* Size of each task's stacks (# of WORDs) */

#define NO_TASKS 3 /* Number of identical tasks */

OS_STK TaskStk[NO_TASKS][TASK_STK_SIZE]; /* Tasks stacks */

OS_STK TaskStartStk[TASK_STK_SIZE];

char TaskData[NO_TASKS]; /* Parameters to pass to each task */

OS_EVENT *mbox;

void init_timer (void); void

UART1_Init(void); void

SendString(char *text);

/* Local functions */

void Task2 (void *data)

{

char txmsg[] = "\r\n Msg from Task-2";

data = data; /* Prevent compiler warning */

while(1)

{

OSTimeDly(5);

SendString("\r\n Task2");

OSMboxPost(mbox, (void *)&txmsg); /* Send message to Task #1 */

}

}

/*-- */

void Task1 (void *data)

{

U8 err;

char *rxmsg;

rxmsg = (char *)OSMboxPend(mbox, 0, &err); /* Wait for message from Task #2 */

while(1)

{

SendString("\r\n Task1");

rxmsg = (char *)OSMboxPend(mbox, 0, &err); /* Wait for message from Task #2 */

SendString(rxmsg);

OSTimeDly(5);

}

}

/*-- */

void TaskStart (void *data)

{

53

init_timer();

UART1_Init();

mbox = (OS_EVENT *) OSMboxCreate((void *)0); /* Create 2 message

mailboxes */

TaskData[1] = 1; /* Each task will display its own letter */

TaskCreate(Task1, (void *)&TaskData[1], "Task1", 1);

TaskData[2] = 1; /* Each task will display its own letter */

TaskCreate(Task2, (void *)&TaskData[2], "Task2", 2);

while(1)

{

OSTimeDly(1500); /* Wait 1.5 second */

}

}

/*-- */

int main (void)

{

OSInit(); /* Initialize uC/OS-II */

TaskCreate(TaskStart, (void *)0, "Task Start", 0);

OSStart(); /* Start multitasking */

return 0; // Actually we should never come here

}

/* *** */

void UART1_Init(void)

{

PLL0CON = 0;

PLL0FEED=0xAA;

PLL0FEED=0x55;

VPBDIV = 1;

// Fpclk = 12.000.000 MHz

// DLM,DLH = Fpclk / (19200*16) = 39 = 0x27

PINSEL0 |= 0x00050000; // Select UART1 RXD/TXD

U1FCR = 0; // Disable FIFO's

U1LCR = 0x83; // 8N1, enable Divisor latch bit

U1DLL = 0x27; // baud rate fixed to 19200 @ PCLK = 12 Mhz

U1DLM = 0;

U1LCR = 3; // Disable Divisor latch bit

}

/*-- */

void SendString(char *text)

{

while(*text)

{

while(!(U1LSR & 0x20));//Wait for Tranmit to complete

U1THR = *text++; //Send to UART1

}

}

/*-- */

54

Algorithm :

 1. Follow the steps to create a New project

2. Type the below code and save it with the name (anyname.c)

3. Follow the steps to create a New Project to compile and build the program

4. Follow the procedures in to download your Hex code to processor using Flash Magic

 Software.

Result:

The C-Language program to create a mailbox and to understand the about the RTOS functions is

developed and is verified.

	NH – 46 CHENNAI – BENGALURU HIGHWAY, VELLORE, VELLORE DIST -632503
	Circuit Diagram to Interface LED with LPC :
	Program :
	Pin Diagram of LCD :
	Algorithm :
	 Open Keil μ-Vision 4

	Algorithm : (1)
	 Open Keil μ-Vision 4

	Theory:
	The reality is that a great many of the devices that you will want to interact with aren't going to be digital, or consist of only two possible 'states' (On/Off, True/False, etc.). Almost every dial or knob on any modern electronics device, for e...
	 Open Keil μ-Vision 4

	Theory: (1)
	The PWM is based on the standard Timer block and inherits all of its features, although only the PWM function is pinned out on the LPC17xx. The Timer is designed to count cycles of the peripheral clock (PCLK) and optionally generate interrupts o...
	 Open Keil μ-Vision 4
	Algorithm :
	 Open Keil μ-Vision 4

	Algorithm : (1)
	 Open Keil μ-Vision 4

	Algorithm : (2)
	 Open Keil μ-Vision 4

	Algorithm : (3)
	 Open Keil μ-Vision 4

	Algorithm : (4)

