

 DEPARTMENT OF ELECTRONICS AND

COMMUNICATION ENGINEERING

 REGULATION – 2021

 EC3492 - DIGITAL SIGNAL PROCESSING

 LABORATORY

 Mrs.G.DEEPIKA.,M.E.,

 Assistant Professor/ Electronics and Communication Engineering

 Annai Mira College of Engineering and Technology

 Ranipet – 632 517

GENERAL GUIDELINES AND SAFETY NSTRUCTIONS

1. Sign in the log register as soon as you enter the lab and strictly observe your lab timings.

2. Strictly follow the written and verbal instructions given by the teacher / Lab Instructor. If

 you do not understand the instructions, the handouts and the procedures, ask the

instructor or teacher.

3. Never work alone! You should be accompanied by your laboratory partner and / or the

instructors / teaching assistants all the time.

4. It is mandatory to come to lab in a formal dress and wear your ID cards.

5. Do not wear loose-fitting clothing or jewels in the lab. Rings and necklaces are usual

excellent conductors of electricity.

6. Mobile phones should be switched off in the lab. Keep bags in the bag rack.

7. Keep the labs clean at all times, no food and drinks allowed inside the lab.

8. Intentional misconduct will lead to expulsion from the lab.

9. Do not handle any equipment without reading the safety instructions. Read the handout

and procedures in the Lab Manual before starting the experiments.

10. Do your wiring, setup, and a careful circuit checkout before applying power. Do

not make circuit changes or perform any wiring when power is on.

11. Avoid contact with energized electrical circuits.

12. Do not insert connectors forcefully into the sockets.

13. NEVER try to experiment with the power from the wall plug.

14.Immediately report dangerous or exceptional conditions to the Lab instructor /

teacher: Equipment that is not working as expected, wires or connectors are

broken, the equipment that smells or “smokes”. If you are not sure what the

problem is or what's going on, switch off the Emergency shutdown.

15. Never use damaged instruments, wires or connectors. Hand over these parts to the

Lab instructor/Teacher.

16. Be sure of location of fire extinguishers and first aid kits in the laboratory.

17. After completion of Experiment, return the bread board, trainer kits, wires, CRO

probes and other components to lab staff. Do not take any item from the lab without

permission.

18. Observation book and lab record should be carried to each lab. Readings of current

lab experiment are to be entered in Observation book and previous lab experiment

should be written in Lab record book. Both the books should be corrected by the faculty

in each lab.

19. Special Precautions during soldering practice

a. Hold the soldering iron away from your body. Don't point the iron towards

you. b. Don't use a spread solder on the board as it may cause short circuit.

c. Do not overheat the components as excess heat may damage the components/board.

d. In case of burn or injury seek first aid available in the lab or at the college dispensary.

PREFACE

 This book on “DIGITAL SIGNAL PROCESSING LABORATORY

MANUAL (Electronics and communication Engineering)” covers the complete

syllabus prescribed by the Anna University, Chennai for the fourth semester B.E/

B.Tech. Degree course under Outcome Based Education Credit System with the

new regulation 2021.

 This book covers Discrete time sequences,Linear and circular convolution,

Design of FIR((LPF/HPF/BPF/BSF)) and IIR filters((LPF/HPF/BPF/BSF)).

 We hope that this book will be useful to both teachers and students. Finally

we would request the readers to kindly send their valuable comments and

suggestions towards the improvement of the manual and the same will be gratefully

acknowledge.

 Any suggestion from the reader for the betterment of this book can be dropped

into flytodeepi@gmail.com.

Mrs.G.DEEPIKA.,M.E.,

mailto:flytodeepi@gmail.com

ACKNOWLEDGEMENT

 We are thankful to and fortunate enough to get constant encouragement,

support and guideline from Chairman Thiru.S.Ramadoss , Secretary & Treasurer

Mr.G.Thamotharan for his blessings to complete the book successfully.

We would not forget to remember our Principal Dr.T.K.Gopinathan and

Vice-Principal Dr.D.Saravanan for his constant assistance in preparing this book.

ANNAI MIRA COLLEGE OF

ENGINEERINGAND TECHNOLOGY

 DEPARTMENT OF

ELECTRONICS AND COMMUNICATION ENGINEERING

LAB MANUAL

(Regulation - 2021)

 Subject Code / Name : EC3492 /DIGITAL SIGNAL PROCESSING LAB

 Semester/Year : IV/II – ECE

PREPARED BY

 Mrs.G.DEEPIKA.,M.E

 Assistant Professor / ECE

APPROVED BY

 Dr.V.SRIVIDHYA.M.E.,Ph.D

 HOD / ECE

6

 Department of Electronics and

Communication Engineering

EC 3492 DIGITAL SIGNAL PROCESSING

LABORATORY

List of Experiments

 MATLAB / EQUIVALENT SOFTWARE PACKAGE/ DSP PROCESSOR BASED

 IMPLEMENTATION

1. Generation of elementary Discrete-Time sequences
2. Linear and Circular convolutions
3. Auto correlation and Cross Correlation
4. Frequency Analysis using DFT
5. Design of FIR filters (LPF/HPF/BPF/BSF) and demonstrates the filtering

operation
6. Design of Butterworth and Chebyshev IIR filters (LPF/HPF/BPF/BSF) and

demonstrate
the filtering operations

7. Study of architecture of Digital Signal Processor
8. Perform MAC operation using various addressing modes
9. Generation of various signals and random noise
10. Design and demonstration of FIR Filter for Low pass, High pass,

Band pass and Band stop filtering
11. Design and demonstration of Butter worth and Chebyshev IIR Filters

for Low pass, High pass, Band pass and Band stop filtering
12. Implement an Up-sampling and Down-sampling operation in DSP

Processor

7

EXP.NO:1 GENERATION OF ELEMENTARY DISCRETE-TIME SEQUENCES

AIM:

 To write a program to generate the elementary discrete time sequences using MATLAB.

SOFTWARE REQUIRED:

MATLAB R2014a

ALGORITHM:

 Get the input for the required sequences.

 Generate the sequence.

 Plot the corresponding sequences.

PROGRAM:

%Program for sine wave

Clc;

Clearall;

Closeall;

N = 7;

n = 0:1:N-1;

y = ones(1,N);

subplot(3,2,1);

stem(n,y);

xlabel('time');

ylabel('amplitude');

title('unit step seqence');

N1 = 5;

n1 = 0:1:N-1;

y1 = n1;

subplot(3,2,2);

stem(n1,y1);

xlabel('time');

ylabel('amplitude');

title('unit ramp sequence');

N2 = 6;

n2 = 0:0.1:N-1;

8

y2 = sin(2*pi*n2);

subplot(3,2,3);

stem(n2,y2);

xlabel('time');

ylabel('amplitude');

title('sinusoidal seqeuence');

N3 = 4;

n3 = 0:0.1:N3-1;

y3 = cos(2*pi*n3);

subplot(3,2,4);

stem(n3,y3);

xlabel('time');

ylabel('amplitude');

title('cosine sequence');

N4 = 5;

n4 = 0:0.1:N4-1;

a = 3;

y4 = exp(a*n4);

subplot(3,2,5);

stem(n4,y4);

xlabel('time');

ylabel('amplitude');

title('exponential sequence');

n5 = -3:1:3;

y5 = [zeros(1,3),ones(1,1),zeros(1,3)];

subplot(3,2,6);

stem(n5,y5);

xlabel('time');

ylabel('amplitude');

title('unit impluse');

9

OUTPUT:

0 1 2 3 4 5 6
0

0.5

1

time

a
m

p
lit

u
d
e

unit step seqence

0 1 2 3 4 5 6
0

2

4

6

time

a
m

p
lit

u
d
e

unit ramp sequence

0 1 2 3 4 5 6
-1

-0.5

0

0.5

1

time

a
m

p
lit

u
d
e

sinusoidal seqeuence

0 0.5 1 1.5 2 2.5 3
-1

-0.5

0

0.5

1

time

a
m

p
lit

u
d
e

cosine sequence

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2
x 10

5

time

a
m

p
lit

u
d
e

exponential sequence

-3 -2 -1 0 1 2 3
0

0.5

1

time

a
m

p
lit

u
d
e

unit impluse

RESULT:

 Thus the elementary discrete time sequences are generated and plottedusing MATLAB.

10

EXP.NO: 2 LINEAR AND CIRCULAR CONVOLUTIONS

AIM:

 To write a program to performLinear and Circular Convolution of two sequences using

MATLAB.

SOFTWARE REQUIRED:

MATLAB R2014a

ALGORITHM:

 Get the input sequence x (n) and impulse sequence h (n).

 Perform the convolution of two sequences.

 Plot the convoluted sequences.

PROGRAM:

LINEAR CONVOLUTION:

clc;

clearall;

closeall;

x=input('Enter the input sequence');

h=input('Enter the impulse sequence');

y=conv(x,h);

subplot(2,2,1);

stem(x);

xlabel('n');

ylabel('amplitude');

title('input sequence');

subplot(2,2,2);

stem(h);

xlabel('n');

ylabel('amplitude');

title('impulse sequence');

subplot(2,2,3);

stem(y);

xlabel('n');

ylabel('amplitude');

title('convoluted sequence');

disp('Convoluted sequence');y

11

INPUT :

Enter the input sequence[1 2 3 4]

Enter the impulsesequence[5 6 7 8]

Convoluted sequence

y = 5 16 34 60 61 52 32

OUTPUT:

1 2 3 4
0

1

2

3

4

n

a
m

p
li
tu

d
e

input sequence

1 2 3 4
0

2

4

6

8

n

a
m

p
li
tu

d
e

impulse sequence

0 2 4 6 8
0

20

40

60

80

n

a
m

p
li
tu

d
e

convoluted sequence

12

CIRCULAR CONVOLUTION

clc;

clearall;

closeall;

x=input('Enter the input sequence');

h=input('Enter the impulse sequence');

N1=length(x);

N2=length(h);

N=max(N1,N2);

N3=N1-N2;

if (N3>=0);

 h=[h,zeros(1,N3)];

else

 x=[x,zeros(1,N3)];

end

for n=1:N;

y(n)=0;

for i=1:N;

 j=n-i+1;

if (j<=0)

 j=N+j;

end

y(n)=y(n)+[x(i)*h(j)];

end

end

subplot(1,3,1);

stem(y);

xlabel('n');

ylabel('amplitude');

title('convoluted sequence');

disp('Convoluted sequence');y

subplot(1,3,2);

stem(x);

xlabel('n');

ylabel('amplitude');

title('input sequence');

subplot(1,3,3);

stem(h);

xlabel('n');

ylabel('amplitude');

title('impulse sequence');

13

INPUT:

Enter the inputsequence[1 2 3 4]

Enter the impulsesequence[4 3 2 1]

Convoluted sequence

y = 24 22 24 30

OUTPUT :

0 2 4
0

5

10

15

20

25

30

n

am
pl

itu
de

convoluted sequence

0 2 4
0

0.5

1

1.5

2

2.5

3

3.5

4

n

am
pl

itu
de

input sequence

0 2 4
0

0.5

1

1.5

2

2.5

3

3.5

4

n

am
pl

itu
de

impulse sequence

RESULT:

 Thus the linear and circular convolutions of two sequences wereperformed using

MATLAB.

14

EXP NO: 3 AUTO CORRELATION AND CROSS CORRELATION

AIM:

 To write a program to perform the Autocorrelation and cross correlation of two

sequences using MATLAB.

SOFTWARE REQUIRED:

MATLAB R2014a

ALGORITHM:

 Get the required input sequences.

 Perform the correlation of two sequences.

 Plot the correlated sequences.

PROGRAM:

AUTOCORRELATION:

clc;

clearall;

closeall;

x=input('Enter the input sequence');

y=xcorr(x,x);

subplot(2,1,1);

stem(x);

ylabel('amplitude');

xlabel('x(n)');

subplot(2,1,2);

stem(y);

ylabel('amplitude');

xlabel('y(n)');

disp('The resultant signal is');y

15

INPUT:

Enter the inputsequence[1 2 3 4]

The resultant signal is

y = 4.0000 11.0000 20.0000 30.0000 20.0000 11.0000 4.0000

OUTPUT:

1 1.5 2 2.5 3 3.5 4
0

1

2

3

4

a
m

p
li
tu

d
e

x(n)

1 2 3 4 5 6 7
0

5

10

15

20

25

30

a
m

p
li
tu

d
e

y(n)

16

CROSS CORRELATION:

clc;

clearall;

closeall;

x=input('Enter the first sequence');

h=input('Enter the second sequence');

y=xcorr(x,h);

subplot(3,1,1);

stem(x);

ylabel('amplitude');

xlabel('x(n)');

subplot(3,1,2);

stem(h);

ylabel('amplitude');

xlabel('h(n)');

subplot(3,1,3);

stem(y);

ylabel('amplitude');

xlabel('y(n)');

disp('The resultant signal is:');y

17

INPUT:

Enter the first sequence [1 2 3 4]

Enter the second sequence[4 5 6 7]

The resultant signal is:

y = 7.0000 20.0000 38.0000 60.0000 47.0000 32.0000 16.0000

OUTPUT:

1 1.5 2 2.5 3 3.5 4
0

2

4

a
m

p
lit

u
d
e

x(n)

1 1.5 2 2.5 3 3.5 4
0

5

10

a
m

p
lit

u
d
e

h(n)

1 2 3 4 5 6 7
0

50

100

a
m

p
lit

u
d
e

y(n)

RESULT:

 Thus the autocorrelation and cross correlation of two sequences were performed

using MATLAB.

18

EXP.NO:4 FREQUENCY ANALYSIS USING DFT

AIM:

 To writea MATLAB program for frequency analysis using DFT.

SOFTWARE REQUIRED:

MATLAB R2014a

ALGORITHM:

 Get the input sequence x (n).

 Obtain DFT of the input sequence(resultant sequence) using FFT.

 Plot the resultant sequence.

 Calculate the magnitude and phase values of resultant signal.

 Plot the magnitude and phase plots.

PROGRAM:

clc;

clearall;

closeall;

xn=input('enter the input sequence');

XK = fft (xn);

subplot(1,4,1);

stem(xn);

xlabel('n');

ylabel('amplitude');

title('input sequence');

subplot(1,4,2);

stem(XK)

xlabel('n');

ylabel('amplitude');

title('output sequence');

disp('resultant sequence XK');XK

subplot(1,4,3);

stem(abs(XK));

xlabel('k');

ylabel('magnitude of x(K)');

title('magnitude plot');

subplot(1,4,4);

stem(angle(XK));

xlabel('k');

ylabel('angle of x(K)');

title('phase plot');

19

INPUT:

Enter the input sequence[1 1 1 1]

Resultant sequence XK

XK = 4 0 0 0

OUTPUT:

0 2 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

n

a
m

p
lit

u
d
e

input sequence

0 2 4
0

0.5

1

1.5

2

2.5

3

3.5

4

n

a
m

p
lit

u
d
e

output sequence

0 2 4
0

0.5

1

1.5

2

2.5

3

3.5

4

k

m
a
g
n
it
u
d
e
 o

f
x
(K

)

magnitude plot

0 2 4
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

k

a
n
g
le

 o
f

x
(K

)

phase plot

RESULT:

 Thus the frequency analysis using DFT was performed using MATLAB.

20

EXP.NO:5(a) DESIGN OF FIR FILTER USING HAMMING WINDOW

AIM:

 To write a MATLAB program to design a FIR filters(LPF/HPF/BPF/BSF) and

demonstrates the filtering operation using hamming window.

SOFTWARE REQUIRED

MATLAB R2014a

ALGORITHM:

 Get the FIR filter specifications.

 Obtain the filter coefficients using window function.

 Plot the frequency response of the filters.

PROGRAM:

clc;

clearall;

closeall;

rp=input('Enter the passband ripple');

rs=input('Enter the stopband ripple');

fp=input('Enter the passband frequency');

fs=input('Enter the stopband frequency');

f=input('Enter the sampling frequency');

wp=2*fp/f;

ws=2*fs/f;

num=-20*log10(sqrt(rp*rs))-13;

dem=14.6*(fs-fp)/f;

n=ceil(num/dem);

n1=n+1;

if(rem(n,2)~=0)

 n1=n;

 n=n-1;

end

y=hamming(n1);

disp('The window coefficient are as follows');y

b= fir1(n,wp,y);

disp('unit sample response of fir filter is h(n)=');b

disp(b);b

[h,o]=freqz(b,1,256);

21

m=20*log(abs(h));

subplot(2,2,1);

plot(o/pi,m);

ylabel('gain in dB');

xlabel('(a)normalized frequency');

title('LPF');

b=fir1(n,wp,'high',y);

[h,o]=freqz(b,1,256);

m=20*log10(abs(h));

subplot(2,2,2);

plot(o/pi,m);

ylabel('gain in dB');

xlabel('(b)normalized frequency');

title('HPF');

wn=[wpws];

b=fir1(n,wn,y);

[h,o]=freqz(b,1,256);

m=20*log(abs(h));

subplot(2,2,3);

plot(o/pi,m);

ylabel('gain in dB');

xlabel('(c)normalized frequency');

title('BPF');

wn=[wpws];

b=fir1(n,wn,'stop',y);

[h,o]=freqz(b,1,256);

m=20*log(abs(h));

subplot(2,2,4);

plot(o/pi,m);

ylabel('gain in dB');

xlabel('(d)normalized frequency');

title('BSF');

22

INPUT:

Enter the passband ripple0.01

Enter the stopband ripple0.02

Enter the passband frequency1000

Enter the stopband frequency2000

Enter the sampling frequency5000

The window coefficient are as follows

y =

 0.0800

 0.2147

 0.5400

 0.8653

 1.0000

 0.8653

 0.5400

 0.2147

 0.0800

unit sample response of fir filter is h(n)=

b =

 Columns 1 through 8

 -0.0061 -0.0136 0.0512 0.2657 0.4057 0.2657 0.0512 -0.0136

 Column 9

 -0.0061

 Columns 1 through 8

 -0.0061 -0.0136 0.0512 0.2657 0.4057 0.2657 0.0512 -0.0136

 Column 9

 -0.0061

b =

 Columns 1 through 8

 -0.0061 -0.0136 0.0512 0.2657 0.4057 0.2657 0.0512 -0.0136

 Column 9

 -0.0061

23

OUTPUT:

0 0.5 1
-200

-150

-100

-50

0

g
a
in

 i
n
 d

B

(a)normalized frequency

LPF

0 0.5 1
-40

-30

-20

-10

0

g
a
in

 i
n
 d

B

(b)normalized frequency

HPF

0 0.5 1
-100

-50

0

50

g
a
in

 i
n
 d

B

(c)normalized frequency

BPF

0 0.5 1
-30

-20

-10

0
g
a
in

 i
n
 d

B

(d)normalized frequency

BSF

RESULT:

 Thus the FIR filter using hamming window is designed using MATLAB.

24

EXP.NO:5(b) DESIGN OF FIR FILTER USING HANNING WINDOW

AIM:

 To write a MATLAB program for design a FIR filters(LPF/HPF/BPF/BSF) and

demonstrates the filtering operation usinghanning window.

SOFTWARE REQUIRED:

 MATLAB R2014a

ALGORITHM:

 Get the FIR filter specifications.

 Obtain the filter coefficients using window function.

 Plot the frequency response of the filters.

PROGRAM:

clc;

clearall;

closeall;

rp=input('Enter the passband ripple');

rs=input('Enter the stopband ripple');

fp=input('Enter the passband frequency');

fs=input('Enter the stopband frequency');

f=input('Enter the sampling frequency');

wp=2*fp/f;

ws=2*fs/f;

num=-20*log10(sqrt(rp*rs))-13;

dem=14.6*(fs-fp)/f;

n=ceil(num/dem);

n1=n+1;

if(rem(n,2)~=0)

 n1=n;

 n=n-1;

end

y=hanning(n1);

disp('the window coefficient are as follows');y

b= fir1(n,wp,y);

disp('unit sample response of fir filter is h(n)=');b

disp(b);b

25

[h,o]=freqz(b,1,256);

m=20*log10(abs(h));

subplot(2,2,1);

plot(o/pi,m);

ylabel('gain in dB');

xlabel('(a)normalized frequency');

title('LPF');

b=fir1(n,wp,'high',y);

[h,o]=freqz(b,1,256);

m=20*log(abs(h));

subplot(2,2,2);

plot(o/pi,m);

ylabel('gain in dB');

xlabel('(b)normalized frequency');

title('HPF');

wn=[wpws];

b=fir1(n,wn,y);

[h,o]=freqz(b,1,256);

m=20*log(abs(h));

subplot(2,2,3);

plot(o/pi,m);

ylabel('gain in dB');

xlabel('(c)normalized frequency');

title('BPF');

wn=[wpws];

b=fir1(n,wn,'stop',y);

[h,o]=freqz(b,1,256);

m=20*log(abs(h));

subplot(2,2,4);

plot(o/pi,m);

ylabel('gain in dB');

xlabel('(d)normalized frequency');

title('BSF');

26

INPUT:

Enter the passband ripple 0.01

Enter the stopband ripple0.02

Enter the passband frequency1000

Enter the stopband frequency2000

Enter the sampling frequency5000

Ehe window coefficient are as follows

y =

 0.0955

 0.3455

 0.6545

 0.9045

 1.0000

 0.9045

 0.6545

 0.3455

 0.0955

unit sample response of fir filter is h(n)=

b =

 Columns 1 through 8

 -0.0071 -0.0213 0.0605 0.2704 0.3950 0.2704 0.0605 -0.0213

 Column 9

 -0.0071

 Columns 1 through 8

 -0.0071 -0.0213 0.0605 0.2704 0.3950 0.2704 0.0605 -0.0213

 Column 9

 -0.0071

b =

 Columns 1 through 8

 -0.0071 -0.0213 0.0605 0.2704 0.3950 0.2704 0.0605 -0.0213

 Column 9

 -0.0071

27

OUTPUT:

0 0.5 1
-80

-60

-40

-20

0

g
a
in

 i
n
 d

B

(a)normalized frequency

LPF

0 0.5 1
-150

-100

-50

0

50

g
a
in

 i
n
 d

B

(b)normalized frequency

HPF

0 0.5 1
-200

-150

-100

-50

0

g
a
in

 i
n
 d

B

(c)normalized frequency

BPF

0 0.5 1
-40

-30

-20

-10

0

g
a
in

 i
n
 d

B

(d)normalized frequency

BSF

RESULT:

 Thus the FIR filter using hanning window is designed using MATLAB.

28

EXP.NO:5(c) DESIGN OF FIR FILTER USING KAISER WINDOW

AIM:

 To write a MATLAB program for design a FIR filters (LPF/HPF/BPF/BSF) and

demonstrate the filtering operation using Kaiser Window.

SOFTWARE REQUIRED:

 MATLAB R2014a

ALGORITHM:

 Get the FIR filter specifications.

 Obtain the filter coefficients using window function.

 Plot the frequency response of the filters.

PROGRAM:

clc;

clearall;

closeall;

rp=input('Enter the passband ripple');

rs=input('Enter the stopband ripple');

fp=input('Enter the passband frequency');

fs=input('Enter the stopband frequency');

f=input('Enter the sampling frequency');

beta=input(‘enter the beta value’);

wp=2*fp/f;

ws=2*fs/f;

num=-20*log10(sqrt(rp*rs))-13;

dem=14.6*(fs-fp)/f;

n=ceil(num/dem);

n1=n+1;

if(rem(n,2)~=0)

 n1=n;

 n=n-1;

end

y=kaiser(n1,beta);

disp('The window coefficient are as follows');y

b= fir1(n,wp,y);

disp('unit sample response of fir filter is h(n)=');b

disp(b);b

29

[h,o]=freqz(b,1,256);

m=20*log10(abs(h));

subplot(2,2,1);

plot(o/pi,m);

ylabel('gain in dB');

xlabel('(a)normalized frequency');

title('LPF');

b=fir1(n,wp,'high',y);

[h,o]=freqz(b,1,256);

m=20*log(abs(h));

subplot(2,2,2);

plot(o/pi,m);

ylabel('gain in dB');

xlabel('(b)normalized frequency');

title('HPF');

wn=[wpws];

b=fir1(n,wn,y);

[h,o]=freqz(b,1,256);

m=20*log(abs(h));

subplot(2,2,3);

plot(o/pi,m);

ylabel('gain in dB');

xlabel('(c)normalized frequency');

title('BPF');

wn=[wpws];

b=fir1(n,wn,'stop',y);

[h,o]=freqz(b,1,256);

m=20*log(abs(h));

subplot(2,2,4);

plot(o/pi,m);

ylabel('gain in dB');

xlabel('(d)normalized frequency');

title('BSF');

30

INPUT:

Enter the passband ripple 0.02

Enter the stopband ripple0.04

Enter the passband frequency1000

Enter the stopband frequency2000

Enter the sampling frequency8000

Enter the beta value 2

The window coefficient are as follows

y =

 0.9403

 0.9616

 0.9783

 0.9903

 0.9976

 1.0000

 0.9976

 0.9903

 0.9783

 0.9616

 0.9403

unit sample response of fir filter is h(n)=

b = Columns 1 through 8

 -0.0393 0.0000 0.0682 0.1464 0.2086 0.2322 0.2086 0.1464

 Columns 9 through 11

 0.0682 0.0000 -0.0393

 Columns 1 through 8

 -0.0393 0.0000 0.0682 0.1464 0.2086 0.2322 0.2086 0.1464

 Columns 9 through 11

 0.0682 0.0000 -0.0393

b = Columns 1 through 8

 -0.0393 0.0000 0.0682 0.1464 0.2086 0.2322 0.2086 0.1464

 Columns 9 through 11

 0.0682 0.0000 -0.0393

31

OUTPUT:

0 0.5 1
-80

-60

-40

-20

0

g
a
in

 i
n
 d

B

(a)normalized frequency

LPF

0 0.5 1
-150

-100

-50

0

50

g
a
in

 i
n
 d

B

(b)normalized frequency

HPF

0 0.5 1
-200

-100

0

100

g
a
in

 i
n
 d

B

(c)normalized frequency

BPF

0 0.5 1
-150

-100

-50

0

50

g
a
in

 i
n
 d

B

(d)normalized frequency

BSF

RESULT:

 Thus the FIR filter using Kaiser Window was designed using MATLAB.

32

EXP.NO:5(d) DESIGN OF FIR FILTER USING RECTANGULAR WINDOW

AIM:

 To write a MATLAB program for design a FIR filters (LPF/HPF/BPF/BSF) and

demonstrates the filtering operation using Rectangular Window.

SOFTWARE REQUIRED:

 MATLAB R2014a

ALGORITHM:

 Get the FIR filter specifications.

 Obtain the filter coefficients using window function.

 Plot the frequency response of the filters.

PROGRAM:

clc;

clear all;

close all;

rp=input('enter the pass band ripple');

rs=input('enter the stop band ripple');

fp=input('enter the pass band frequency');

fs=input('enter the stop band frequency');

f=input('enter the sampling frequency');

wp=2*fp/f;

ws=2*fs/f;

num=-20*log10(sqrt(rp*rs))-13;

dem=14.6*(fs-fp)/f;

n=ceil(num/dem);

% computation for odd or even

n1=n+1;

if(rem(n,2)~=0)

 n1=n;

 n=n-1;

end

% window function

y=boxcar(n1);

disp('the window coefficient are as follows');

33

% low pass filter design

b=fir1(n,wp,y);

disp('unit sample response of fir filter is h(n)=');b

% frequency response

[h,o]=freqz(b,1,256);

% to find gain

m=20*log10(abs(h));

subplot(2,2,1);

plot(o/pi,m);

ylabel('gain in db');

xlabel('(a)normalised frequency');

title('LPF');

% high pass filter design

% fir filter design

b=fir1(n,wp,'high',y);

% frequency response

[h,o]=freqz(b,1,256);

% to find gain

m=20*log10(abs(h));

subplot(2,2,2);

plot(o/pi,m);

ylabel('gain in db');

xlabel('(b)normalised frequency');

title('HPF');

% band pass filter design

% fir filter design

wn=[wpws];

b=fir1(n,wn,y);

% frequency response

[h,o]=freqz(b,1,256);

% to find gain

m=20*log10(abs(h));

subplot(2,2,3);

plot(o/pi,m);

ylabel('gain in db');

xlabel('(c)normalised frequency');

title('BPF');

34

% band stop filter design

% fir filter design

wn=[wpws];

b=fir1(n,wn,'stop',y);

% frequency response

[h,o]=freqz(b,1,256);

% to find gain

m=20*log10(abs(h));

subplot(2,2,4);

plot(o/pi,m);

ylabel('gain in db');

xlabel('(d)normalised frequency');

title('BSF');

35

INPUT:

Enter the pass band ripple: 0.07

Enter the stop band ripple: 0.05

Enter the pass band freq: 1300

Enter the stop band freq: 2000

Enter the sampling freq: 7000

The window co-efficient are follows

Y = 1

 1

 1

 1

 1

 1

 1

 1

 1

Unit sample response of fir filter is h (n)=

Columns 1 through 7

 -0.0834 -0.0391 0.1207 0.3070 0.3896 0.3070 0.1207

 Columns 8 through 9

 -0.0391 -0.0834

36

Output Waveform:

RESULT:

Thus the FIR filter using Rectangular Window is designed using MATLAB.

0 0.5 1
-60

-40

-20

0

20

g
a
in

 i
n
 d

b

(a)normalised frequency

LPF

0 0.5 1
-60

-40

-20

0

20

g
a
in

 i
n
 d

b
(b)normalised freq

HPF

0 0.5 1
-60

-40

-20

0

20

g
a
in

 i
n
 d

b

(c)normalised freq

BPF

0 0.5 1
-20

-10

0

10

g
a
in

 i
n
 d

b

(d)normalised freq

BSF

37

EXP.NO:6 DESIGN OF BUTTERWORTHIIR FILTER

AIM:

 To design a Butterworth IIR filters (LPF/HPF/BPF/BSF) and demonstrates the filtering

operation using MATLAB program.

SOFTWARE REQUIRED:

 MATLAB R2014a

ALGORITHM:

 Get the IIR filter specifications.

 Obtain the filter coefficients

 Plot the frequency response of the filters.

PROGRAM:

clc;

clearall;

closeall;

rp=input('Enter the passband ripple');

rs=input('Enter the stopband ripple');

wp=input('Enter the passband frequency');

ws=input('Enter the stopband frequency');

f=input('Enter the sampling frequency');

w1=2*wp/f;

w2=2*ws/f;

[n,wn]=buttord(w1,w2,rp,rs);

[b,a]=butter(n,wn,'low');

[h,w]=freqz(b,a,512);

subplot(2,2,1);

plot(w/pi,abs(h));

ylabel('gain in dB');

xlabel('(a)normalized frequency');

title('LPF');

[b,a]=butter(n,wn,'high');

[h,w]=freqz(b,a,512);

subplot(2,2,2);

plot(w/pi,abs(h));

ylabel('gain in dB');

xlabel('(b)normalized frequency');

38

title('HPF');

wn1=[w1 w2];

[b,a]=butter(n,wn1);

[h,w]=freqz(b,a,512);

subplot(2,2,3);

plot(w/pi,abs(h));

ylabel('gain in dB');

xlabel('(c)normalized frequency');

title('BPF');

wn2=[w1 w2];

[b,a]=butter(n,wn2,'stop');

[h,w]=freqz(b,a,512);

subplot(2,2,4);

plot(w/pi,abs(h));

ylabel('gain in dB');

xlabel('(d)normalized frequency');

title('BSF');

39

INPUT

Enter the passbandripple6

Enter the stopbandripple20

Enter the passband frequency1000

Enter the stopband frequency2000

Enter the sampling frequency7000

OUTPUT:

0 0.5 1
0

0.5

1

g
a
in

 i
n
 d

B

(a)normalized frequency

LPF

0 0.5 1
0

0.5

1

g
a
in

 i
n
 d

B

(b)normalized frequency

HPF

0 0.5 1
0

0.5

1

g
a
in

 i
n
 d

B

(c)normalized frequency

BPF

0 0.5 1
0

0.5

1

1.5

g
a
in

 i
n
 d

B

(d)normalized frequency

BSF

RESULT:

 Thus the Butterworth IIR filter was designed using MATLAB.

40

EXP.NO:6(b) DESIGN OF CHEBYSHEV-I IIR FILTER

AIM:

 To design a Chebyshev-I IIR filters (LPF/HPF/BPF/BSF) and demonstrates the filtering

operation using MATLAB program.

SOFTWARE REQUIRED:

 MATLAB R2014a

ALGORITHM:

 Get the IIR filter specifications.

 Obtain the filter coefficients.

 Plot the frequency response of the filters.

PROGRAM:

clc;

clearall;

closeall;

rp=input('Enter the passband ripple');

rs=input('Enter the stopband ripple');

wp=input('Enter the passband frequency');

ws=input('Enter the stopband frequency');

f=input('Enter the sampling frequency');

w1=2*wp/f;

w2=2*ws/f;

[n,wn]=cheb1ord(w1,w2,rp,rs);

[b,a]=cheby1(n,rp,wn,'low');

[h,w]=freqz(b,a,512);

subplot(2,2,1);

plot(w/pi,abs(h));

ylabel('gain in dB');

xlabel('(a)normalized frequency');

title('LPF');

[b,a]=cheby1(n,rp,wn,'high');

[h,w]=freqz(b,a,512);

subplot(2,2,2);

plot(w/pi,abs(h));

ylabel('gain in dB');

xlabel('(b)normalized frequency');

41

title('HPF');

wn1=[w1 w2];

[b,a]=cheby1(n,rp,wn1);

[h,w]=freqz(b,a,512);

subplot(2,2,3);

plot(w/pi,abs(h));

ylabel('gain in dB');

xlabel('(c)normalized frequency');

title('BPF');

wn2=[w1 w2];

[b,a]=cheby1(n,rp,wn2,'stop');

[h,w]=freqz(b,a,512);

subplot(2,2,4);

plot(w/pi,abs(h));

ylabel('gain in dB');

xlabel('(d)normalized frequency');

title('BSF');

42

INPUT

Enter the passband ripple 6

Enter the stopband ripple 20

Enter the passband frequency 1000

Enter the stopband frequency 2000

Enter the sampling frequency 7000

OUTPUT

0 0.5 1
0

0.5

1

g
a
in

 i
n
 d

B

(a)normalized frequency

LPF

0 0.5 1
0

0.5

1

g
a
in

 i
n
 d

B

(b)normalized frequency

HPF

0 0.5 1
0

0.5

1

g
a
in

 i
n
 d

B

(c)normalized frequency

BPF

0 0.5 1
0

0.5

1

g
a
in

 i
n
 d

B

(d)normalized frequency

BSF

RESULT:

 Thus the Chebyshev-I IIR filter was designed using MATLAB.

43

EXP.NO:6(c) DESIGN OF CHEBYSHEV-II IIR FILTER

AIM:

 To design a Chebyshev-I IIR filters (LPF/HPF/BPF/BSF) and demonstrates the filtering

operation using MATLAB program.

SOFTWARE REQUIRED:

 MATLAB R2014a

ALGORITHM:

 Get the IIR filter specifications.

 Obtain the filter coefficients using .

 Plot the frequency response of the filters.

PROGRAM:

clc;

clearall;

closeall;

rp=input('Enter the passband ripple');

rs=input('Enter the stopband ripple');

wp=input('Enter the passband frequency');

ws=input('Enter the stopband frequency');

f=input('Enter the sampling frequency');

w1=2*wp/f;

w2=2*ws/f;

[n,wn]=cheb2ord(w1,w2,rp,rs);

[b,a]=cheby2(n,rp,wn,'low');

[h,w]=freqz(b,a,512);

subplot(2,2,1);

plot(w/pi,abs(h));

ylabel('gain in dB');

xlabel('(a)normalized frequency');

title('LPF');

[b,a]=cheby2(n,rp,wn,'high');

[h,w]=freqz(b,a,512);

subplot(2,2,2);

plot(w/pi,abs(h));

ylabel('gain in dB');

44

xlabel('(b)normalized frequency');

title('HPF');

wn1=[w1 w2];

[b,a]=cheby2(n,rp,wn1);

[h,w]=freqz(b,a,512);

subplot(2,2,3);

plot(w/pi,abs(h));

ylabel('gain in dB');

xlabel('(c)normalized frequency');

title('BPF');

wn2=[w1 w2];

[b,a]=cheby2(n,rp,wn2,'stop');

[h,w]=freqz(b,a,512);

subplot(2,2,4);

plot(w/pi,abs(h));

ylabel('gain in dB');

xlabel('(d)normalized frequency');

title('BSF');

45

INPUT

Enter the passband ripple 6

Enter the stopband ripple 20

Enter the passband frequency 1000

Enter the stopband frequency 2000

Enter the sampling frequency 7000

OUTPUT

0 0.5 1
0

0.5

1

g
a
in

 i
n
 d

B

(a)normalized frequency

LPF

0 0.5 1
0

0.5

1

g
a
in

 i
n
 d

B

(b)normalized frequency

HPF

0 0.5 1
0

0.5

1

g
a
in

 i
n
 d

B

(c)normalized frequency

BPF

0 0.5 1
0

0.5

1

1.5

g
a
in

 i
n
 d

B

(d)normalized frequency

BSF

RESULT:

 Thus the Chebyshev-II IIR filter was designed using MATLAB

46

EXP.NO: 7 STUDY OF ARCHITECTURE OF DIGITAL SIGNAL PROCESSOR

ARCHITECTURE:

 The 54x DSP use an advanced, modified Harvard architecture that maximizes processing

power by maintaining one program memory bus and three data memory buses. These processors

also provide an arithmetic logic unit (ALU) that has a high degree of parallelism, application-

specific hardware logic, on chip memory and additional on –chip peripherals. These DSPs

families also provide a highly specialized instruction set which is the basis of the operational

flexibility and the speed of these DSPs. Separate program and the data spaces allow

simultaneous access to program instructions and data, providing the high degree of parallelism.

Two reads and one write operation can be performed in a single cycle. Instructions with parallel

store and application- specific instructions can fully utilize this architecture. In addition, data can

be transferred between data and program spaces. Such parallelism supports a powerful set of

arithmetic, logic and bit manipulation operations that can be performed in a single machine

cycle. Also included are the control mechanisms to manage interrupts, repeated operations and

function calls.

1. CENTRAL PROCESSING UNIT (CPU):

 The CPU of the 54x devises contains:

 40-bit arithmetic logic unit (ALU)

 Two 40 bit accumulator

 Barrel shifter

 17-bit multiplier /adder.

 A compare, select and store unit (CSSU)

2. ARITHMETIC LOGIC UNIT (ALU):

 The 54x devises perform 2’s complement arithmetic using 40-bit ALU and two 40-bit

accumulators (ASSU and ACCB). The ALU also can perform Boolean operations. The ALU can

function as a two 16-bit ALUs and perform two 16-bit operations simultaneously when the C16

bit in status register 1 (ST1) is set.

47

3. ACCUMULATORS:

 The accumulators, ACCA and ACCB store the output from the ALU or the

Multiplier/adder block. The accumulators can provide a second input to the ALU or the

multiplier /adder. The bit in each accumulator is grouped as follows:

48

 Guard bits (bits 32-39)

 A high – order word (bits 16-31)

 A low order word (bits 0-15)

 4 barrel Shifter

The 54x’s barrel shifter has a 40-bit input connected to the accumulator or data memory

(CB, DB) and a 40-bit output connected to the ALU or data memory (EB). The barrel shifter

produces a left shift of 0 to 31 bits and a right shift of 0 to 16 bits on the input data. The shift

requirements are defined in the shift-count field (ASM) of ST1 or defined in the temporary

register (TREG), which is designed as a shift-count register. This shifter and the exponent

detector normalize the values in the accumulator in a single cycle. The least significant bits

(LSBs) of the output are filled with 0s and the most significant bits (MSBs) can neither be zero

filled or sign extended, depending on the state of the sign-extended mode bit (SXM) of

ST1.addtional shift capabilities enable the processor to perform numerical scaling, bit extraction,

extended arithmetic and overflow prevention operation.

5. MULTIPLIER/ADDER:

The multiplier /adder perform 17- bit 2’s complement multiplication with the 40-bit

accumulation in a single instruction cycle. The multiplier /adder block consists of several

elements such as multiplier, adder, signed /unsigned input control, fractional control, a zero

detector, a rounder (2’s complement), overflow/saturation logic and TREG. The multiplier has

two inputs: one input is selected from the TREG, a data memory operand or an accumulator; the

other is selected from the program memory, the data memory, an accumulator or an immediate

value. The fast on-chip multiplier allows the 54x to perform operations such as convolution,

correlation and filtering efficiently. In addition, the multiplier and ALU together execute

multiply/accumulate (MAC) computations and ALU operations in parallel in a single instruction

cycle. This function is used in determining the Euclid distance and in implementing symmetrical

and least mean square (LMS) filters which are required for complex DSP algorithms.

6. COMPARE, SELECT AND STORE UNIT (CSSU):

 The compare, select and store unit (CSSU) performs maximum comparisons between the

accumulator, high and low words allows the test/control (TC) flag bit of status register 0 (ST0)

49

and the transition (TRN) register to keep their transition histories and selects the larger word in

the accumulator to be stored in data memory. The CSSU also accelerates Veterbi type butterfly

computation with optimized on – chip hardware.

7. PROGRAM CONTROL IS PROVIDED BY SEVERAL HARDWARE AND

SOFTWARE MECHANISMS:

 The program controller decodes the instructions, manages the pipeline, stores the status

of operations and decides the conditional operations. Some of the hardware elements included in

the program controller are the programcounter, the status and the control register, the stack and

the address- generation logic.

 The 54x supports both the use of hardware and software interrupts for the program

control. The interrupts service routine is vectored through a reloadable interrupt vector table. The

interrupts can be globally enabled/disable and can be individually masked through the interrupt,

mask register (IMR).

8. STATUS REGISTER (ST0, ST1):

 The status register ST0, ST1 contain the status of the various conditions and the modes

for the 54x devises. The ST0 contains the flags (OV,C, and TC) produced by the arithmetic

operations and bit manipulations in addition to the data pointer (DP) and the auxiliary register

pointer (ARP fields). ST1 contains the various modes and the instructions that the processor

operates on and executes.

9. AUXILLARY REGISTERS (AR0-AR7):

 The eight 16- bit auxiliary registers (AR0-AR7) can be accessed by the central arithmetic

logic unit (CALU) and modified by the auxiliary register arithmetic units (ARAUs). The primary

function of the auxiliary registers is generating 16-bit addresses for data space. However, these

registers also can act as general purpose registers or counters.

10. TEMPORAY REGISTERS(TREG):

 The TREG is used to hold one of the multiplicands for multiply and multiply/accumulate

instructions. It can hold a dynamic (execution – time programmable) shift count for instructions

50

with the shift operation such as ADD, LD and SUB. It also can hold a dynamic bit address for

the BITT instruction. The EXP instruction stores the exponent value computed into the TREG

while the NORM instruction uses the TREG value to normalize the number. For ACS operation

of Viterbi decoding, TREG holds branch metrics used by the DADST and DSADT instructions.

11. TRANSITION REGISTER (TRN):

 The TRN is a 16-bit register that is used to hold the transition decision for the path to new

metrics to perform the Viterbi algorithm. The CMPS (Compare, select, max and store)

instruction updates the contents of the TRN based on the comparison between the accumulator

high word and the accumulator low word.

12. STACK-POINTER REGISTER (SP):

 The SP is a 16-bit register that contains the address at the top of the system stack. The SP

always points to the last element pushed onto the stack. The stack is manipulated by interrupts,

traps, calls, returns and the PUSHD, PSHM, POPD and POPM instructions. Pushes and pops of

the stack pre- decrement and post increment respectively all 16 bits of the SP.

13. CIRCULAR-BUFFER-SIZE REGISTER (BK):

 The 16- bit BK is used by the ARAUs in circular addressing to specify the data block

size.

14. BLOCK-REPEAT REGISTERS:

 The block-repeat counter (BRC) is a 16-bit register used to specify the number of times a

block of code is to be repeated when performing a block repeat. The block-repeat start address

(RSA) is a 16-bit register containing the starting address of the block of the program memory to

be repeated when operating in the repeat mode.

15. INTERRUPT REGISTERS (IMR, IFR):

 The interrupt- mask register (IMR) is used to mask off specific interrupts individually at

required times. The interrupt-flag register (IFR) indicated the current status of the interrupts.

51

16. PROCESSOR-MODE STATUS REGISTER:

 The processor – mode status register (PMST) controls memory configurations of the 54x

devices.

17. POWER-DOWN MODES:

 There are three power-down modes, activated by the IDLE1, IDLE2 and IDLE3

instructions. In these modes, the 54x devices enter a dormant state and dissipate considerably

less power than in normal operation. The IDLE1 instruction is used to shut down the CPU. The

IDLE2 instruction is used to shut down the CPU and on- chip peripherals. The IDLE3 instruction

is used to shut down the 54x processor completely. This instruction stops the PLL circuitry as

well as the CPU and peripherals.

52

EXP.NO: 8(a)PERFORM MAC OPERATION USING VARIOUS ADDRESSING MODES

AIM:

 To write an assembly language program for the study of direct, indirect and immediate

addressing modes using TMS320C5X.

TOOLS REQUIRED:

DSP HARDWARE:

 TMS320C5X- Starter Kit

 RS 232 Cable

 Power Supply unit

DSP SOFTWARE:

 Assembler

 Loader

 Debugger

ALGORITHM:

 Initialize all memory mapped register.

 Initialize the processor.

 Initialize the analog interface chip.

 Enable receiver interrupt.

 Store the sample length and buffer starting address.

 Initialize analog interface chip register.

PROGRAM:

DIRECT ADDRESSING MODE:

.mmregs ; includes memory mapped registers

 .ds 0f00h ; set data segment to 0f00ah

 .ps 0a00h ; origin of the program 0a00h

rint b getdata ; receive interrupt

xint b xint ; transmit interrupt

 .ps 0a00h ; program entry point

 .entry ; initialize the program counter

 .include “c:/c5xinz.asm”

53

 lap #20h ; the data page number 20h(32) is loaded into

 accumulator

lacc 10h ; content of 20h(32) page 10h location

 lac 5h,2

lar Aro,#15h ; AR0 loaded with content of dma 1115h

sacl 15h

 sacl20h,3 ; accumulator low byte is left shifted by 3 bits and

 stored in into dma 1120h

getdata samm ART ;accumulator low byte stored into ART in page0 DP

 remains unaffected

ldp #12h ;the data page number 12h is loaded in DP

 add 25h

 add 7h,2

 sub 10h ;the content of dma 0910h is subtracted from the

 content of accumulator

 sub 12h,2

splk #10h,TREGO ;constant 10h is stored into TREGO

mpy 15h

REG1 .set 010ch

REG2 .set 020ah

REG4 .set 0415h

REG5 .set 0505h

 .include “c:/ac0 1inz.asm”

 .end ; program end

INDIRECT ADDRESSING MODE

 .mmregs ; includes memory mapped registers

 .ds 0f00h ; set data segment to 0f00ah

 .ps 0a00h ; origin of the program 0a00h

rint b getdata ; receive interrupt

xint b xint ; transmit interrupt

 .ps 0a00h ; program entry point

 .entry ; initialize the program counter

 .include “c:/c5xinz.asm”

lar ARO,#1000h

lacc * ;content of dma pointed by ARO is loaded in

 accumulator

54

lacc *,4,AR1 ;content of dma 1000h left shifted by 4 bits and loaded

 into accumulator. ARP points to auxiliary register 1

lar AR1,#,1010h

sacl * ;accumulator low byte is stored into the dma pointed by

 AR1

sacl*+,2,AR0 ;accumulator low byte is shifted by 2 bits and stored

 into the dma pointed in AR1

lacc*-2,AR1

getdata lacc*0+

lacc *BR0+ ;accumulator loaded with content of dma pointed by

 AR1 and the content of INDEX register added to AR1

 with the reverse carry propagation

 add #+.0.ar0

 sub *.-2 ;content of dma pointed by AR1 is added from the

 content of accumulator. The result is stored into the

 accumulator AR0is decremented by 1.

splk #10h,TREGO ;constant 10h is stored into TREGO

mpy * ;content of 0915h is multiplied with the content of

 TREGO and the result is stored into PREG

REG1 .set 010ch

REG2 .set 020ah

 REG4 .set 0415h

REG5 .set 0505h

 .include “c:/ac0 1inz.asm”

 .end ; program end

IMMEDIATE ADDRESSING MODE

 .mmregs ; includes memory mapped registers

 .ds 0f00h ; set data segment to 0f00af

 .ps 0a00h ; origin of the program 0a00h

rint b getdata ;receive interrupt

xint b xint ;transmit interrupt

 .ps 0a00h ; program entry point

 .entry ; initialize the program counter

 .include “c:/c5xinz.asm”

 lacc#1000h ;value 1000h is loaded into accumulator

 lacc#1111h,3 ;constant 1111h is left shifted by 3 bits and loaded in

 accumulator. The accumulator after execution is 8888h

getdata lar AR0,#1000h ;AR0 is loaded the content of 1000h

lar AR1,#1100h ;1100f is loaded in AR1

 add#00ffh ;ffhis added to the content of accumulator

 sp1k #10h,TREGO

55

mpy#0010h ;0010h is multiplied with the content of TREGO

sub #0022h

sub #0011h,3 ;0011h is left shifted by 3 bits subtracted from the

 content of accumulator

REG1 .set 010ch

REG2 .set 020ah

REG4 .set 0415h

REG5 .set 0505h

 .include “c:/ac0 1inz.asm”

 .end ; end of program

RESULT:

Thus the assembly language program for the study of direct, indirect and immediate

addressing modes was written and executed successfullyusing TMS320C5X.

56

EXP.NO:9 GENERATION OF VARIOUS SIGNALS AND RANDOM NOISE
AIM:

 To write an assembly language program for the generation of sine wave using

TMS320C5X.

TOOLS REQUIRED:

DSP HARDWARE:

 TMS320C5X- Starter Kit

 RS 232 Cable

 Power Supply unit

DSP SOFTWARE:

 Assembler

 Loader

 Debugger

ALGORITHM:

 Initialize all memory mapped register.

 Initialize the processor.

 Initialize the analog interface chip.

 Enable receiver interrupt.

 Store the sample length and buffer starting address.

 Initialize analog interface chip register.

PROGRAM:

 .mmregs ;initialise all registers.

 .ds 1000h

 .include "sinetbl.dat" ;load 800 point wavetable

 ;f1= fs/D = 8000/800 = 10hz.

 .ds 0f00h

temp .word 0

mod .word 100 ;Required freq. = mod * f1 = 100*10 = 1000hz.

scale .q15 0.5

;---------------------------------

;Interrupt vectors

;---------------------------------

 .ps 080ah

57

rint b getdata ;receive interrupt

xint b xint ;transmit interrupt

 .ps 0a00h ;program entry point

 .entry

;---------------------------------

;Processor initialization

;---------------------------------

 .include "c5xinz.asm"

splk #012h,IMR ;enable RINT & INT2.

 call ac01_init ;call to initialize serial port & AC01.

clrc INTM ;enable all interrupts.

wait: nop ;wait for interrupt.

 b wait

;---------------------------------

;Receive interrupt handler

;---------------------------------

getdata splk #1,gotflag ;set a flag to indicate data available.

lamm DRR

ldp #mod ;set data page pointer.

lacc mod ;load modifier

samm INDX ;store modifier in INDX register.

callwavgen ;calculate current sample output from

 wavetable.

and #0FFFCh,0 ;only 14 MSBs are used in ADC &DAC,So

 ; mask unused two LSBs.

samm DXR ;send digital data to DAC to produce analog

 o/p.

clrc INTM ;enable interrupt.

 rete ;return back to main from interrupt routine.

offset .set 1320h ;table length = 800 + table start address.

 .include "wavgen.asm" ;includewavgen module.

58

;---------------------------------

;AC01 register initialization.

;---------------------------------

REG1 .set 0124h

REG2 .set 0212h

REG4 .set 0417h

REG5 .set 0505h

;---------------------------------

;Serial port and AC01 initialization

;---------------------------------

 .include "ac01inz.asm"

 .END ;end of program.

59

TABULATION:

Amplitude (v) Time (ms)

OUTPUT:

RESULT:

 Thus the assembly language program for the generation of sine waveform was written

and executed successfullyusing TMS320C5X.

60

EXP.NO:10(a) IMPLEMENTATION OF FIR LOW PASS FILTER

AIM:

 To write an assemble language program for the implementation of FIR low pass filter

using TMS320C5X.

TOOLS REQUIRED:

DSP HARDWARE:

 TMS320C5X- Starter Kit

 RS 232 Cable

 Power Supply unit

DSP SOFTWARE:

 Assembler

 Loader

 Debugger

ALGORITHM:

 Initialize all memory mapped register.

 Initialize the processor.

 Initialize the analog interface chip.

 Enable receiver interrupt.

 Store the sample length and buffer starting address.

 Initialize analog interface chip register.

PROGRAM:

 .mmregs ;initialize all memory mapped registers

 .ds 0f00h ;set data segment to 0f00h.

;-------------------------------

;201 coefficients table.

;-------------------------------

 .include "firlpf.cof"

rbuf .word 0 ;Temp buffer allocation.

;---------------------------------

;Interrupt vectors

;---------------------------------

61

 .ps 080ah

rint b getdata ;receive interrupt

xint b xint ;transmit interrupt

 .ps 0a00h ;program entry point

 .entry

;---------------------------------

;Processor initialization

;---------------------------------

 .include "c5xinz.asm"

;---------------------------------

;Internal memory initialization

;---------------------------------

 mar *,AR7 ;ARP = AR7

lacl #0 ;ACC = 0

lar AR7,#300h ;clear 300 to 3ffh(data array).

 rpt #255

sacl *+

 mar *,AR0

lar AR0,#0200h ;copy 201 co-efficients

 rpt #200 ;to address 200h-2C8h(B0).

bldd #FIR_COEFFS,*+,AR0

splk #012h,IMR ;enable RINT & INT2.

 call ac01_init ;call to initialize serial port & AC01.

clrc INTM ;enable all interrupts.

wait: nop ;wait for interrupt.

 b wait

;---------------------------------

;Receive interrupt handler

;---------------------------------

62

getdata splk #1,gotflag ;set a flag to indicate data available.

lamm DRR ;read ADC data from DRR register.

 and #0fffch ;mask LSB two bits.

ldp #rbuf

saclrbuf

lacc rbuf,13 ;load accu-high with ADC data.

ldp #06h ;set page pointer = 6.

sach 0 ;store ADC data(address=300h).

 mar *,AR1

lar AR1,#3C8h ;load AR1 with data buffer end addr.

 ;(data memory).

;---------------------------------

;FILTERING.

;---------------------------------

setc CNF ;convert B0 to program memory.

mpy #0 ;clear product reg.

lacl #0 ;clear accumulator.

 rpt #200 ;repeat MACD insru. 201 times.

macd #0ff00h,*- ;convolution process.

apac ;get result in accumulator.

sach 0 ;store result in data buffer.

lacc 0,4

ldp 0

samm DXR ;send digital ADC data to DAC.

clrc CNF ;convert B0 to data memory.

 rete ;return from interrupt.

;---------------------------------

;AC01 register initialization.

;---------------------------------

REG1 .set 0124h

REG2 .set 0212h

REG4 .set 0415h

REG5 .set 0505h

;---------------------------------

;Serial port and AC01 initialization

;---------------------------------

 .include "ac01inz.asm"

 .END ;end of program.

63

TABULATION:

Amplitude (v) Time (ms)

OUTPUT

RESULT:

 Thus the assembly language program for the implementation of FIR low pass filter was

written and executed successfullyusing TMS320C5X.

64

EXP.NO:10 (b) IMPLEMENTATION OF FIR HIGH PASS FILTER

AIM:

 To write an assembly language program for the implementation of FIR high pass filter

using TMS320C5X.

TOOLS REQUIRED:

DSP HARDWARE:

 TMS320C5X- Starter Kit

 RS 232 Cable

 Power Supply unit

DSP SOFTWARE:

 Assembler

 Loader

 Debugger

ALGORITHM:

 Initialize all memory mapped register.

 Initialize the processor.

 Initialize the analog interface chip.

 Enable receiver interrupt.

 Store the sample length and buffer starting address.

 Initialize analog interface chip register.

PROGRAM:

 .mmregs ;initialize all memory mapped registers

 .ds 0f00h ;set data segment to 0f00h.

;-------------------------------

;201 coefficients table.

;-------------------------------

 .include "firhpf.cof"

rbuf .word 0 ;Temp buffer allocation.

;---------------------------------

;Interrupt vectors

;---------------------------------

65

 .ps 080ah

rint b getdata ;receive interrupt

xint b xint ;transmit interrupt

 .ps 0a00h ;program entry point

 .entry

;---------------------------------

;Processor initialization

;---------------------------------

 .include "c:\fepl\c5xinz.asm"

;---------------------------------

;Internal memory initialization

;---------------------------------

 mar *,AR7

lacl #0

lar AR7,#300h ;clear 300 to 3ffh(data array).

 rpt #255

sacl *+

 mar *,AR0

lar AR0,#0200h ;copy 201 co-efficients

 rpt #200 ;to address 200h-2C8h(B0).

blkd COEFFS,*+,AR0

splk #012h,IMR

 call ac01_init ;call to initialize serial port & AC01.

clrc INTM

wait: nop ;wait for interrupt.

 b wait

;---------------------------------

;Receive interrupt handler

;---------------------------------

Getdata splk #1,gotflag ;set a flag to indicate data available.

lamm DRR

 and #0fffch

ldp #rbuf

66

saclrbuf

lacc rbuf,13

ldp #06h

sach 0

 mar *,AR1

lar AR1,#3C8h ;load AR1 with data buffer end addr.

setc CNF

mpy #0

lacl #0

 rpt #200

macd #0ff00h,*- ;convolution process.

apac

sach 0

lacc 0,4

ldp 0

samm DXR

clrc CNF

 rete

;---------------------------------

;AC01 register initialization.

;---------------------------------

REG1 .set 0124h

REG2 .set 0212h

REG4 .set 0415h

REG5 .set 0505h

;---------------------------------

;Serial port and AC01 initialization

;---------------------------------

 .include "c:\fepl\ac01inz.asm"

 .end ;end of program.

67

TABULATION:

Amplitude (v) Time (ms)

OUTPUT:

RESULT:

 Thus the assembly language program for the implementation of FIR high low pass filter

was written and executed successfully using TMS320C5X.

68

EXP.NO:11 IMPLEMENTATION OF IIR FILTER

AIM:

 To write an assembly language program for the implementation of IIR filter using

TMS320C5X.

TOOLS REQUIRED:

DSP HARDWARE:

 TMS320C5X- Starter Kit

 RS 232 Cable

 Power Supply unit

DSP SOFTWARE:

 Assembler

 Loader

 Debugger

ALGORITHM:

 Initialize all memory mapped register.

 Initialize the processor.

 Initialize the analog interface chip.

 Enable receiver interrupt.

 Store the sample length and buffer starting address.

 Initialize analog interface chip register.

PROGRAM:

.mmregs ;initialize all memory mapped registers

 .ds 0f00h ;set data segment to 0f00h.

DN .word 0 ;Input data delay line

DNM1 .word 0

DNM2 .word 0

YN .word 0 ;output buffer

XN .word 0 ;input buffer

69

 .include "bilinear.cof" ;bilinear IIR filter coefficients

.include "invarian.cof" ;invariance IIR filter coefficients

 .ps 080ah

rint b getdata ;receive interrupt

xint b xint ;transmit interrupt

 .ps 0a00h ;program entry point

 .entry

 .include "c5xinz.asm"

splk #012h,IMR

 call ac01_init ;call to initialize serial port & AC01.

lacl #0

ldp #DN

sacl DN ;clear input data delay line.

sacl DNM1

sacl DNM2

clrc INTM

wait: nop ;wait for interrupt.

 b wait

getdata splk #1,gotflag ;set a flag to indicate data available.

lamm DRR ;read input from AIC

 and #0FFFCh,0 ;mask unwanted bits

ldp #XN

sacl XN ;store input sample

lacc XN,15

lt DNM1

mpy A1

lta DNM2

mpy A2

apac ;DN = x(n) + d(n-1)*a1 + d(n-2)*a2

sach DN,0 ;store pole result

lacl #0

mpy B2

 ltd DNM1

mpy B1

70

 ltd DN

mpy B0

apac

sach YN,3 ;Y(n) = d(n)*b0 + d(n-1)*b1 + d(n-2)*b2

lacc YN,0 ;store y(n) result

 and #0FFFCh,0

samm DXR ;output the filter response y(n) to AIC.

 rete

REG1 .set 010ch

REG2 .set 0212h

REG4 .set 0415h

 REG5 .set 0505h

 .include "ac01inz.asm"

 .END ;end of program.

71

TABULATION:

Amplitude (v) Time (ms)

OUTPUT:

RESULT:

 Thus the assembly language program for the implementation of IIR filter was written and

executedsuccessfully using TMS320C5X.

72

EX.No: 12 IMPLEMENT AN UP-SAMPLING AND DOWN-SAMPLING
 OPERATION IN DSP PROCESSOR
AIM:

 To write an assembly language program for sampling the given input signal using

TMS320C5X.

TOOLS REQUIRED:

DSP HARDWARE:

 TMS320C5X- Starter Kit

 RS 232 Cable

 Power Supply unit

DSP SOFTWARE:

 Assembler

 Loader

 Debugger

ALGORITHM:

 Initialize all memory mapped register.

 Initialize the processor.

 Initialize the analog interface chip.

 Enable receiver interrupt.

 Store the sample length and buffer starting address.

 Initialize analog interface chip register.

PROGRAMM

 .mmregs ;initialize all memory mapped registers

 .ps 080ah

rint b getdata ;receive interrupt

xint b xint ;transmit interrupt

 .ps 0a00h ;program entry point

 .entry

 .include "c5xinz.asm"

 lar AR2,#1000h

 splk #012h,IMR ;enable RINT & INT2.

73

 call ac01_init ;call to initialize serial port & AC01.

 clrc INTM ;enable all interrupts.

 lar AR1,#2048

 lar AR2,#1000h

wait: idle ;wait for interrupt.

 mar *,AR1

 banz wait,*-,AR2

 nop

 nop

 setc INTM

 splk #02h,IMR

 clrc INTM

hlt: b hlt

getdata splk #1,gotflag ;set a flag to indicate data available.

 lamm DRR ;read ADC data from DRR register.

 and #0fffch ;mask LSB two bits.

 samm DXR ;send digital ADC data to DAC.

 mar *,AR2

 sacl *+

 rete ;return from interrupt.

REG1 .set 010ch

REG2 .set 020ah

REG4 .set 0415h

REG5 .set 0505h

 .include "ac01inz.asm"

 .END ;end of program.

74

TABULATION:

Amplitude (v) Time (ms)

OUTPUT:

RESULT:

 Thus the assembly language program for the sampling operation was written and

executed successfully using TMS320C5X.

75

EXP.NO: LINEAR CONVOLUTION

AIM:

 To write an assembly language program for linear convolution using TMS320C5X.

76

TOOLS REQUIRED:

DSP HARDWARE:

 TMS320C5X- Starter Kit

 RS 232 Cable

 Power Supply unit

DSP SOFTWARE:

 Assembler

 Loader

 Debugger

ALGORITHM:

 Include memory mapped register and set pointer program memory and data memory.

 Append 0’s buffer and after impulse response no of zero in length of input sequence.

 Zero accumulator and product register.

 Multiply accumulator program memory with data memory.

 Each time program memory is incremented by one and data memory decremented by one.

 Repeat step 4 for n+1 timer where n is length of largest sequence.

 Decrement count value ARZ if ARZ≠0 go to step3.

PROGRAM:

 .mmregs ;initialize all registers

 .ps 0a00h

 .word 1h,2h,3h,2h,1h ;x(n) stored form pma 0a00h

 .ds 1000h

 .word0h,0h,0h,0h

 .word 3h,4h,5h,0h

 .word oh,0h,0h,0h

 .entry

 LAR AR0.#1004H ;actual data starts only at 1004h

 LAR AR1,#1020H ;starting address for result

 LAR AR2,#07H ;length for output sequence

 Loop ZAP ;zero accumulator and product reg

 MAR*,AR0

 RPT#5H ; execute instructions followed by RPT

 instructions 5 times

 MAC 0a00h,*-

 MAR *.AR1

77

 SACL*+.0.AR0 ; one result is stored

 ADRK#7H

 MAR*,AR2

 MAR*

 BANZ loop

 .end ; end of program

78

INPUT:

1000 01

1001 02

1002 03

1003 02

1004 01

1005 03

1006 04

1007 05

1008 00

RESULT:

 Thus the assembly language program for linear convolution was written and executed

successfully using TMS320C5X.

OUTPUT:

1020 03

1021 10

1022 22

1023 28

1024 26

1025 10

1026 05

1027 00

79

EXP.NO: 13 STUDY OF ANTI- ALIASING FILTER

Antialiasing filters:

Anti-aliasing filters are always analog filters as they process the signal before it is

sampled. In most cases, they are also low-pass filters unless band-pass sampling techniques are

used.The sampling process incorporating an ideal low-pass filter as the anti-alias filter is shown

below. The ideal filter has a flat passband and the cut-off is very sharp. Since the cut-off

frequency of this filter is half of that of the sampling frequency, the resulting replicated spectrum

of the sampled signal do not overlap each other. Thus no aliasing occurs.

Analog to Digital conversion process using Anti – aliasing filter

If the sampling frequency does not satisfy the sampling theorem (i.e., the sampled signal

has frequency components greater than half the sampling frequency), then the sampling process

creates new frequency components .This phenomenon is called aliasing and must obviously be

avoided in a digital control system. Hence, the continuous signal to be sampled must not include

significant frequency components greater than the Nyquist frequency ωs/2.

https://www.sciencedirect.com/topics/engineering/analog-filter
https://www.sciencedirect.com/topics/engineering/passbands
https://www.sciencedirect.com/topics/computer-science/aliasing
https://www.sciencedirect.com/topics/engineering/sampling-theorem
https://www.sciencedirect.com/topics/engineering/digital-control-system
https://www.sciencedirect.com/topics/engineering/nyquist-frequency

80

For this purpose, it is recommended to low-pass filter the continuous signal before sampling,

especially in the presence of high-frequency noise. The analog low-pass filter used for this

purpose is known as the antialiasing filter. The antialiasing filter is typically a simple first-order

RC filter, but some applications require a higher-order filter such as a Butterworth or a Bessel

filter. The overall control scheme is shown below.

Control scheme with an antialiasing filter.

Because a low-pass filter can slow down the system by attenuating high-frequency dynamics,

the cutoff frequency of the low-pass filter must be higher than the bandwidth of the closed-loop

system so as not to degrade the transient response. A rule of thumb is to choose the filter

bandwidth equal to a constant time the bandwidth of the closed-loop system. The value of the

constant varies depending on economic and practical considerations. For a conservative but more

expensive design, the cutoff frequency of the low-pass filter can be chosen as 10 times the

bandwidth of the closed-loop system to minimize its effect on the control system dynamics, and

then the sampling frequency can be chosen 10 times higher than the filter cutoff frequency so

there is a sufficient attenuation above the Nyquist frequency. Thus, the sampling frequency is

100 times the bandwidth of the closed-loop system. To reduce the sampling frequency, and the

associated hardware costs, it is possible to reduce the antialiasing filter cutoff frequency. In the

extreme case, we select the cutoff frequency slightly higher than the closed-loop bandwidth. For

a low-pass filter with a high roll-off (i.e., a high-order filter), the sampling frequency is chosen as

five times the closed-loop bandwidth. In summary, the sampling period T can be chosen in

general as 5ωb≤2πT≤100ωb where ωb is the bandwidth of the closed-loop system.

https://www.sciencedirect.com/topics/engineering/bessel-filter
https://www.sciencedirect.com/topics/engineering/bessel-filter
https://www.sciencedirect.com/topics/engineering/cutoff-frequency
https://www.sciencedirect.com/topics/engineering/rules-of-thumb
https://www.sciencedirect.com/topics/engineering/filter-bandwidth
https://www.sciencedirect.com/topics/engineering/filter-bandwidth
https://www.sciencedirect.com/topics/engineering/filter-cutoff-frequency

81

EX.No: 14 CONVERSION OF ANALOG TO DIGITAL FILTERS

AIM:

 To write a program for the conversion of analog to digital filters using MATLAB.

SOFTWARE REQUIRED:

MATLAB R2014a

ALGORITHM:

 Get the required analog input specifications.

 Convert the analog specifications to digital specifications .

 Plot the digital filter specifications.

PROGRAM:

alpha = 0.2;

fs = 200; % Sample Frequency [Hz]

% Laplace Domain

B = 1;

A = [1, alpha];

w = 0:0.2:(fs / 2);

h = freqs(B, A, w);

figure;

plot(w, abs(h .* conj(h)));

% Digital Filter

[b, a] = bilinear(B, A, fs);

figure;

freqz(b, a, 1000);

% Frequency Response of the filter

f = 2;

fs = 10;

[b,a] = butter(6,2*pi*f,'s');

[bz,az] = impinvar(b,a,fs);

freqz(bz,az,1024,fs)

% Impulse Response of the Digital filter

fs = 10;

[b,a] = ellip(3,1,60,2*pi*2.5,'s');

[bz,az] = impinvar(b,a,fs);

impz(bz,az,[],fs)

82

OUTPUT:

Frequency Response of the filter

Impulse Response of the Digital filter

83

RESULT:

 Thus the analog filter was converted to digital filter using MATLAB.

